-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
layout.py
977 lines (816 loc) · 32.9 KB
/
layout.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
# Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
# Denis Engemann <denis.engemann@gmail.com>
# Martin Luessi <mluessi@nmr.mgh.harvard.edu>
# Eric Larson <larson.eric.d@gmail.com>
# Marijn van Vliet <w.m.vanvliet@gmail.com>
# Jona Sassenhagen <jona.sassenhagen@gmail.com>
# Teon Brooks <teon.brooks@gmail.com>
#
# License: Simplified BSD
import logging
from collections import defaultdict
from itertools import combinations
import os.path as op
import numpy as np
from ..transforms import _pol_to_cart, _cart_to_sph
from ..bem import fit_sphere_to_headshape
from ..io.pick import pick_types
from ..io.constants import FIFF
from ..io.meas_info import Info
from ..utils import _clean_names, warn
from ..externals.six.moves import map
class Layout(object):
"""Sensor layouts.
Layouts are typically loaded from a file using read_layout. Only use this
class directly if you're constructing a new layout.
Parameters
----------
box : tuple of length 4
The box dimension (x_min, x_max, y_min, y_max).
pos : array, shape=(n_channels, 4)
The positions of the channels in 2d (x, y, width, height).
names : list
The channel names.
ids : list
The channel ids.
kind : str
The type of Layout (e.g. 'Vectorview-all').
"""
def __init__(self, box, pos, names, ids, kind): # noqa: D102
self.box = box
self.pos = pos
self.names = names
self.ids = ids
self.kind = kind
def save(self, fname):
"""Save Layout to disk.
Parameters
----------
fname : str
The file name (e.g. 'my_layout.lout').
See Also
--------
read_layout
"""
x = self.pos[:, 0]
y = self.pos[:, 1]
width = self.pos[:, 2]
height = self.pos[:, 3]
if fname.endswith('.lout'):
out_str = '%8.2f %8.2f %8.2f %8.2f\n' % self.box
elif fname.endswith('.lay'):
out_str = ''
else:
raise ValueError('Unknown layout type. Should be of type '
'.lout or .lay.')
for ii in range(x.shape[0]):
out_str += ('%03d %8.2f %8.2f %8.2f %8.2f %s\n' % (self.ids[ii],
x[ii], y[ii], width[ii], height[ii], self.names[ii]))
f = open(fname, 'w')
f.write(out_str)
f.close()
def __repr__(self):
"""Return the string representation."""
return '<Layout | %s - Channels: %s ...>' % (self.kind,
', '.join(self.names[:3]))
def plot(self, show=True):
"""Plot the sensor positions.
Parameters
----------
show : bool
Show figure if True. Defaults to True.
Returns
-------
fig : instance of matplotlib figure
Figure containing the sensor topography.
Notes
-----
.. versionadded:: 0.12.0
"""
from ..viz.topomap import plot_layout
return plot_layout(self, show=show)
def _read_lout(fname):
"""Aux function."""
with open(fname) as f:
box_line = f.readline() # first line contains box dimension
box = tuple(map(float, box_line.split()))
names, pos, ids = [], [], []
for line in f:
splits = line.split()
if len(splits) == 7:
cid, x, y, dx, dy, chkind, nb = splits
name = chkind + ' ' + nb
else:
cid, x, y, dx, dy, name = splits
pos.append(np.array([x, y, dx, dy], dtype=np.float))
names.append(name)
ids.append(int(cid))
pos = np.array(pos)
return box, pos, names, ids
def _read_lay(fname):
"""Aux function."""
with open(fname) as f:
box = None
names, pos, ids = [], [], []
for line in f:
splits = line.split()
if len(splits) == 7:
cid, x, y, dx, dy, chkind, nb = splits
name = chkind + ' ' + nb
else:
cid, x, y, dx, dy, name = splits
pos.append(np.array([x, y, dx, dy], dtype=np.float))
names.append(name)
ids.append(int(cid))
pos = np.array(pos)
return box, pos, names, ids
def read_layout(kind, path=None, scale=True):
"""Read layout from a file.
Parameters
----------
kind : str
The name of the .lout file (e.g. kind='Vectorview-all' for
'Vectorview-all.lout').
path : str | None
The path of the folder containing the Layout file. Defaults to the
mne/channels/data/layouts folder inside your mne-python installation.
scale : bool
Apply useful scaling for out the box plotting using layout.pos.
Defaults to True.
Returns
-------
layout : instance of Layout
The layout.
See Also
--------
Layout.save
"""
if path is None:
path = op.join(op.dirname(__file__), 'data', 'layouts')
if not kind.endswith('.lout') and op.exists(op.join(path, kind + '.lout')):
kind += '.lout'
elif not kind.endswith('.lay') and op.exists(op.join(path, kind + '.lay')):
kind += '.lay'
if kind.endswith('.lout'):
fname = op.join(path, kind)
kind = kind[:-5]
box, pos, names, ids = _read_lout(fname)
elif kind.endswith('.lay'):
fname = op.join(path, kind)
kind = kind[:-4]
box, pos, names, ids = _read_lay(fname)
kind.endswith('.lay')
else:
raise ValueError('Unknown layout type. Should be of type '
'.lout or .lay.')
if scale:
pos[:, 0] -= np.min(pos[:, 0])
pos[:, 1] -= np.min(pos[:, 1])
scaling = max(np.max(pos[:, 0]), np.max(pos[:, 1])) + pos[0, 2]
pos /= scaling
pos[:, :2] += 0.03
pos[:, :2] *= 0.97 / 1.03
pos[:, 2:] *= 0.94
return Layout(box=box, pos=pos, names=names, kind=kind, ids=ids)
def make_eeg_layout(info, radius=0.5, width=None, height=None, exclude='bads'):
"""Create .lout file from EEG electrode digitization.
Parameters
----------
info : instance of Info
Measurement info (e.g., raw.info).
radius : float
Viewport radius as a fraction of main figure height. Defaults to 0.5.
width : float | None
Width of sensor axes as a fraction of main figure height. By default,
this will be the maximum width possible without axes overlapping.
height : float | None
Height of sensor axes as a fraction of main figure height. By default,
this will be the maximum height possible withough axes overlapping.
exclude : list of string | str
List of channels to exclude. If empty do not exclude any.
If 'bads', exclude channels in info['bads'] (default).
Returns
-------
layout : Layout
The generated Layout.
See Also
--------
make_grid_layout, generate_2d_layout
"""
if not (0 <= radius <= 0.5):
raise ValueError('The radius parameter should be between 0 and 0.5.')
if width is not None and not (0 <= width <= 1.0):
raise ValueError('The width parameter should be between 0 and 1.')
if height is not None and not (0 <= height <= 1.0):
raise ValueError('The height parameter should be between 0 and 1.')
picks = pick_types(info, meg=False, eeg=True, ref_meg=False,
exclude=exclude)
loc2d = _auto_topomap_coords(info, picks)
names = [info['chs'][i]['ch_name'] for i in picks]
# Scale [x, y] to [-0.5, 0.5]
loc2d_min = np.min(loc2d, axis=0)
loc2d_max = np.max(loc2d, axis=0)
loc2d = (loc2d - (loc2d_max + loc2d_min) / 2.) / (loc2d_max - loc2d_min)
# If no width or height specified, calculate the maximum value possible
# without axes overlapping.
if width is None or height is None:
width, height = _box_size(loc2d, width, height, padding=0.1)
# Scale to viewport radius
loc2d *= 2 * radius
# Some subplot centers will be at the figure edge. Shrink everything so it
# fits in the figure.
scaling = min(1 / (1. + width), 1 / (1. + height))
loc2d *= scaling
width *= scaling
height *= scaling
# Shift to center
loc2d += 0.5
n_channels = loc2d.shape[0]
pos = np.c_[loc2d[:, 0] - 0.5 * width,
loc2d[:, 1] - 0.5 * height,
width * np.ones(n_channels),
height * np.ones(n_channels)]
box = (0, 1, 0, 1)
ids = 1 + np.arange(n_channels)
layout = Layout(box=box, pos=pos, names=names, kind='EEG', ids=ids)
return layout
def make_grid_layout(info, picks=None, n_col=None):
"""Generate .lout file for custom data, i.e., ICA sources.
Parameters
----------
info : instance of Info | None
Measurement info (e.g., raw.info). If None, default names will be
employed.
picks : array-like of int | None
The indices of the channels to be included. If None, al misc channels
will be included.
n_col : int | None
Number of columns to generate. If None, a square grid will be produced.
Returns
-------
layout : Layout
The generated layout.
See Also
--------
make_eeg_layout, generate_2d_layout
"""
if picks is None:
picks = pick_types(info, misc=True, ref_meg=False, exclude='bads')
names = [info['chs'][k]['ch_name'] for k in picks]
if not names:
raise ValueError('No misc data channels found.')
ids = list(range(len(picks)))
size = len(picks)
if n_col is None:
# prepare square-like layout
n_row = n_col = np.sqrt(size) # try square
if n_col % 1:
# try n * (n-1) rectangle
n_col, n_row = int(n_col + 1), int(n_row)
if n_col * n_row < size: # jump to the next full square
n_row += 1
else:
n_row = int(np.ceil(size / float(n_col)))
# setup position grid
x, y = np.meshgrid(np.linspace(-0.5, 0.5, n_col),
np.linspace(-0.5, 0.5, n_row))
x, y = x.ravel()[:size], y.ravel()[:size]
width, height = _box_size(np.c_[x, y], padding=0.1)
# Some axes will be at the figure edge. Shrink everything so it fits in the
# figure. Add 0.01 border around everything
border_x, border_y = (0.01, 0.01)
x_scaling = 1 / (1. + width + border_x)
y_scaling = 1 / (1. + height + border_y)
x = x * x_scaling
y = y * y_scaling
width *= x_scaling
height *= y_scaling
# Shift to center
x += 0.5
y += 0.5
# calculate pos
pos = np.c_[x - 0.5 * width, y - 0.5 * height,
width * np.ones(size), height * np.ones(size)]
box = (0, 1, 0, 1)
layout = Layout(box=box, pos=pos, names=names, kind='grid-misc', ids=ids)
return layout
def find_layout(info, ch_type=None, exclude='bads'):
"""Choose a layout based on the channels in the info 'chs' field.
Parameters
----------
info : instance of Info
The measurement info.
ch_type : {'mag', 'grad', 'meg', 'eeg'} | None
The channel type for selecting single channel layouts.
Defaults to None. Note, this argument will only be considered for
VectorView type layout. Use `meg` to force using the full layout
in situations where the info does only contain one sensor type.
exclude : list of string | str
List of channels to exclude. If empty do not exclude any.
If 'bads', exclude channels in info['bads'] (default).
Returns
-------
layout : Layout instance | None
None if layout not found.
"""
our_types = ' or '.join(['`None`', '`mag`', '`grad`', '`meg`'])
if ch_type not in (None, 'meg', 'mag', 'grad', 'eeg'):
raise ValueError('Invalid channel type (%s) requested '
'`ch_type` must be %s' % (ch_type, our_types))
chs = info['chs']
# Only take first 16 bits, as higher bits store CTF comp order
coil_types = set([ch['coil_type'] & 0xFFFF for ch in chs])
channel_types = set([ch['kind'] for ch in chs])
has_vv_mag = any(k in coil_types for k in
[FIFF.FIFFV_COIL_VV_MAG_T1, FIFF.FIFFV_COIL_VV_MAG_T2,
FIFF.FIFFV_COIL_VV_MAG_T3])
has_vv_grad = any(k in coil_types for k in [FIFF.FIFFV_COIL_VV_PLANAR_T1,
FIFF.FIFFV_COIL_VV_PLANAR_T2,
FIFF.FIFFV_COIL_VV_PLANAR_T3])
has_vv_meg = has_vv_mag and has_vv_grad
has_vv_only_mag = has_vv_mag and not has_vv_grad
has_vv_only_grad = has_vv_grad and not has_vv_mag
is_old_vv = ' ' in chs[0]['ch_name']
has_4D_mag = FIFF.FIFFV_COIL_MAGNES_MAG in coil_types
ctf_other_types = (FIFF.FIFFV_COIL_CTF_REF_MAG,
FIFF.FIFFV_COIL_CTF_REF_GRAD,
FIFF.FIFFV_COIL_CTF_OFFDIAG_REF_GRAD)
has_CTF_grad = (FIFF.FIFFV_COIL_CTF_GRAD in coil_types or
(FIFF.FIFFV_MEG_CH in channel_types and
any(k in ctf_other_types for k in coil_types)))
# hack due to MNE-C bug in IO of CTF
# only take first 16 bits, as higher bits store CTF comp order
n_kit_grads = sum(ch['coil_type'] & 0xFFFF == FIFF.FIFFV_COIL_KIT_GRAD
for ch in chs)
has_any_meg = any([has_vv_mag, has_vv_grad, has_4D_mag, has_CTF_grad,
n_kit_grads])
has_eeg_coils = (FIFF.FIFFV_COIL_EEG in coil_types and
FIFF.FIFFV_EEG_CH in channel_types)
has_eeg_coils_and_meg = has_eeg_coils and has_any_meg
has_eeg_coils_only = has_eeg_coils and not has_any_meg
if ch_type == "meg" and not has_any_meg:
raise RuntimeError('No MEG channels present. Cannot find MEG layout.')
if ch_type == "eeg" and not has_eeg_coils:
raise RuntimeError('No EEG channels present. Cannot find EEG layout.')
if ((has_vv_meg and ch_type is None) or
(any([has_vv_mag, has_vv_grad]) and ch_type == 'meg')):
layout_name = 'Vectorview-all'
elif has_vv_only_mag or (has_vv_meg and ch_type == 'mag'):
layout_name = 'Vectorview-mag'
elif has_vv_only_grad or (has_vv_meg and ch_type == 'grad'):
if info['ch_names'][0].endswith('X'):
layout_name = 'Vectorview-grad_norm'
else:
layout_name = 'Vectorview-grad'
elif ((has_eeg_coils_only and ch_type in [None, 'eeg']) or
(has_eeg_coils_and_meg and ch_type == 'eeg')):
if not isinstance(info, (dict, Info)):
raise RuntimeError('Cannot make EEG layout, no measurement info '
'was passed to `find_layout`')
return make_eeg_layout(info, exclude=exclude)
elif has_4D_mag:
layout_name = 'magnesWH3600'
elif has_CTF_grad:
layout_name = 'CTF-275'
elif n_kit_grads > 0:
layout_name = _find_kit_layout(info, n_kit_grads)
else:
xy = _auto_topomap_coords(info, picks=range(info['nchan']),
ignore_overlap=True, to_sphere=False)
return generate_2d_layout(xy, ch_names=info['ch_names'], name='custom',
normalize=False)
layout = read_layout(layout_name)
if not is_old_vv:
layout.names = _clean_names(layout.names, remove_whitespace=True)
if has_CTF_grad:
layout.names = _clean_names(layout.names, before_dash=True)
# Apply mask for excluded channels.
if exclude == 'bads':
exclude = info['bads']
idx = [ii for ii, name in enumerate(layout.names) if name not in exclude]
layout.names = [layout.names[ii] for ii in idx]
layout.pos = layout.pos[idx]
layout.ids = [layout.ids[ii] for ii in idx]
return layout
def _find_kit_layout(info, n_grads):
"""Determine the KIT layout.
Parameters
----------
info : Info
Info object.
n_grads : int
Number of KIT-gradiometers in the info.
Returns
-------
kit_layout : str
One of 'KIT-AD', 'KIT-157' or 'KIT-UMD'.
"""
if info['kit_system_id'] is not None:
# avoid circular import
from ..io.kit.constants import KIT_LAYOUT
if info['kit_system_id'] in KIT_LAYOUT:
kit_layout = KIT_LAYOUT[info['kit_system_id']]
if kit_layout is not None:
return kit_layout
raise NotImplementedError("The layout for the KIT system with ID %i "
"is missing. Please contact the developers "
"about adding it." % info['kit_system_id'])
elif n_grads > 157:
return 'KIT-AD'
# channels which are on the left hemisphere for NY and right for UMD
test_chs = ('MEG 13', 'MEG 14', 'MEG 15', 'MEG 16', 'MEG 25',
'MEG 26', 'MEG 27', 'MEG 28', 'MEG 29', 'MEG 30',
'MEG 31', 'MEG 32', 'MEG 57', 'MEG 60', 'MEG 61',
'MEG 62', 'MEG 63', 'MEG 64', 'MEG 73', 'MEG 90',
'MEG 93', 'MEG 95', 'MEG 96', 'MEG 105', 'MEG 112',
'MEG 120', 'MEG 121', 'MEG 122', 'MEG 123', 'MEG 124',
'MEG 125', 'MEG 126', 'MEG 142', 'MEG 144', 'MEG 153',
'MEG 154', 'MEG 155', 'MEG 156')
x = [ch['loc'][0] < 0 for ch in info['chs'] if ch['ch_name'] in test_chs]
if np.all(x):
return 'KIT-157' # KIT-NY
elif np.all(np.invert(x)):
raise NotImplementedError("Guessing sensor layout for legacy UMD "
"files is not implemented. Please convert "
"your files using MNE-Python 0.13 or "
"higher.")
else:
raise RuntimeError("KIT system could not be determined for data")
def _box_size(points, width=None, height=None, padding=0.0):
"""Given a series of points, calculate an appropriate box size.
Parameters
----------
points : array, shape (n_points, 2)
The centers of the axes as a list of (x, y) coordinate pairs. Normally
these are points in the range [0, 1] centered at 0.5.
width : float | None
An optional box width to enforce. When set, only the box height will be
calculated by the function.
height : float | None
An optional box height to enforce. When set, only the box width will be
calculated by the function.
padding : float
Portion of the box to reserve for padding. The value can range between
0.0 (boxes will touch, default) to 1.0 (boxes consist of only padding).
Returns
-------
width : float
Width of the box
height : float
Height of the box
"""
from scipy.spatial.distance import pdist
def xdiff(a, b):
return np.abs(a[0] - b[0])
def ydiff(a, b):
return np.abs(a[1] - b[1])
points = np.asarray(points)
all_combinations = list(combinations(points, 2))
if width is None and height is None:
if len(points) <= 1:
# Trivial case first
width = 1.0
height = 1.0
else:
# Find the closest two points A and B.
a, b = all_combinations[np.argmin(pdist(points))]
# The closest points define either the max width or max height.
w, h = xdiff(a, b), ydiff(a, b)
if w > h:
width = w
else:
height = h
# At this point, either width or height is known, or both are known.
if height is None:
# Find all axes that could potentially overlap horizontally.
hdist = pdist(points, xdiff)
candidates = [all_combinations[i] for i, d in enumerate(hdist)
if d < width]
if len(candidates) == 0:
# No axes overlap, take all the height you want.
height = 1.0
else:
# Find an appropriate height so all none of the found axes will
# overlap.
height = np.min([ydiff(*c) for c in candidates])
elif width is None:
# Find all axes that could potentially overlap vertically.
vdist = pdist(points, ydiff)
candidates = [all_combinations[i] for i, d in enumerate(vdist)
if d < height]
if len(candidates) == 0:
# No axes overlap, take all the width you want.
width = 1.0
else:
# Find an appropriate width so all none of the found axes will
# overlap.
width = np.min([xdiff(*c) for c in candidates])
# Add a bit of padding between boxes
width *= 1 - padding
height *= 1 - padding
return width, height
def _find_topomap_coords(info, picks, layout=None):
"""Guess the E/MEG layout and return appropriate topomap coordinates.
Parameters
----------
info : instance of Info
Measurement info.
picks : list of int
Channel indices to generate topomap coords for.
layout : None | instance of Layout
Enforce using a specific layout. With None, a new map is generated.
With None, a layout is chosen based on the channels in the chs
parameter.
Returns
-------
coords : array, shape = (n_chs, 2)
2 dimensional coordinates for each sensor for a topomap plot.
"""
if len(picks) == 0:
raise ValueError("Need more than 0 channels.")
if layout is not None:
chs = [info['chs'][i] for i in picks]
pos = [layout.pos[layout.names.index(ch['ch_name'])] for ch in chs]
pos = np.asarray(pos)
else:
pos = _auto_topomap_coords(info, picks)
return pos
def _auto_topomap_coords(info, picks, ignore_overlap=False, to_sphere=True):
"""Make a 2 dimensional sensor map from sensor positions in an info dict.
The default is to use the electrode locations. The fallback option is to
attempt using digitization points of kind FIFFV_POINT_EEG. This only works
with EEG and requires an equal number of digitization points and sensors.
Parameters
----------
info : instance of Info
The measurement info.
picks : list of int
The channel indices to generate topomap coords for.
ignore_overlap : bool
Whether to ignore overlapping positions in the layout. If False and
positions overlap, an error is thrown.
to_sphere : bool
If True, the radial distance of spherical coordinates is ignored, in
effect fitting the xyz-coordinates to a sphere. Defaults to True.
Returns
-------
locs : array, shape = (n_sensors, 2)
An array of positions of the 2 dimensional map.
"""
from scipy.spatial.distance import pdist, squareform
chs = [info['chs'][i] for i in picks]
# Use channel locations if available
locs3d = np.array([ch['loc'][:3] for ch in chs])
# If electrode locations are not available, use digization points
if len(locs3d) == 0 or np.allclose(locs3d, 0):
logging.warning('Did not find any electrode locations the info, '
'will attempt to use digitization points instead. '
'However, if digitization points do not correspond to '
'the EEG electrodes, this will lead to bad results. '
'Please verify that the sensor locations in the plot '
'are accurate.')
# MEG/EOG/ECG sensors don't have digitization points; all requested
# channels must be EEG
for ch in chs:
if ch['kind'] != FIFF.FIFFV_EEG_CH:
raise ValueError("Cannot determine location of MEG/EOG/ECG "
"channels using digitization points.")
eeg_ch_names = [ch['ch_name'] for ch in info['chs']
if ch['kind'] == FIFF.FIFFV_EEG_CH]
# Get EEG digitization points
if info['dig'] is None or len(info['dig']) == 0:
raise RuntimeError('No digitization points found.')
locs3d = np.array([point['r'] for point in info['dig']
if point['kind'] == FIFF.FIFFV_POINT_EEG])
if len(locs3d) == 0:
raise RuntimeError('Did not find any digitization points of '
'kind FIFFV_POINT_EEG (%d) in the info.'
% FIFF.FIFFV_POINT_EEG)
if len(locs3d) != len(eeg_ch_names):
raise ValueError("Number of EEG digitization points (%d) "
"doesn't match the number of EEG channels "
"(%d)" % (len(locs3d), len(eeg_ch_names)))
# Center digitization points on head origin
dig_kinds = (FIFF.FIFFV_POINT_CARDINAL,
FIFF.FIFFV_POINT_EEG,
FIFF.FIFFV_POINT_EXTRA)
_, origin_head, _ = fit_sphere_to_headshape(info, dig_kinds, units='m')
locs3d -= origin_head
# Match the digitization points with the requested
# channels.
eeg_ch_locs = dict(zip(eeg_ch_names, locs3d))
locs3d = np.array([eeg_ch_locs[ch['ch_name']] for ch in chs])
# Duplicate points cause all kinds of trouble during visualization
dist = pdist(locs3d)
if np.min(dist) < 1e-10 and not ignore_overlap:
problematic_electrodes = [
chs[elec_i]['ch_name']
for elec_i in squareform(dist < 1e-10).any(axis=0).nonzero()[0]
]
raise ValueError('The following electrodes have overlapping positions:'
'\n ' + str(problematic_electrodes) + '\nThis '
'causes problems during visualization.')
if to_sphere:
# use spherical (theta, pol) as (r, theta) for polar->cartesian
return _pol_to_cart(_cart_to_sph(locs3d)[:, 1:][:, ::-1])
return _pol_to_cart(_cart_to_sph(locs3d))
def _topo_to_sphere(pos, eegs):
"""Transform xy-coordinates to sphere.
Parameters
----------
pos : array-like, shape (n_channels, 2)
xy-oordinates to transform.
eegs : list of int
Indices of eeg channels that are included when calculating the sphere.
Returns
-------
coords : array, shape (n_channels, 3)
xyz-coordinates.
"""
xs, ys = np.array(pos).T
sqs = np.max(np.sqrt((xs[eegs] ** 2) + (ys[eegs] ** 2)))
xs /= sqs # Shape to a sphere and normalize
ys /= sqs
xs += 0.5 - np.mean(xs[eegs]) # Center the points
ys += 0.5 - np.mean(ys[eegs])
xs = xs * 2. - 1. # Values ranging from -1 to 1
ys = ys * 2. - 1.
rs = np.clip(np.sqrt(xs ** 2 + ys ** 2), 0., 1.)
alphas = np.arccos(rs)
zs = np.sin(alphas)
return np.column_stack([xs, ys, zs])
def _pair_grad_sensors(info, layout=None, topomap_coords=True, exclude='bads',
raise_error=True):
"""Find the picks for pairing grad channels.
Parameters
----------
info : instance of Info
An info dictionary containing channel information.
layout : Layout | None
The layout if available. Defaults to None.
topomap_coords : bool
Return the coordinates for a topomap plot along with the picks. If
False, only picks are returned. Defaults to True.
exclude : list of str | str
List of channels to exclude. If empty do not exclude any (default).
If 'bads', exclude channels in info['bads']. Defaults to 'bads'.
raise_error : bool
Whether to raise an error when no pairs are found. If False, raises a
warning.
Returns
-------
picks : array of int
Picks for the grad channels, ordered in pairs.
coords : array, shape = (n_grad_channels, 3)
Coordinates for a topomap plot (optional, only returned if
topomap_coords == True).
"""
# find all complete pairs of grad channels
pairs = defaultdict(list)
grad_picks = pick_types(info, meg='grad', ref_meg=False, exclude=exclude)
for i in grad_picks:
ch = info['chs'][i]
name = ch['ch_name']
if name.startswith('MEG'):
if name.endswith(('2', '3')):
key = name[-4:-1]
pairs[key].append(ch)
pairs = [p for p in pairs.values() if len(p) == 2]
if len(pairs) == 0:
if raise_error:
raise ValueError("No 'grad' channel pairs found.")
else:
warn("No 'grad' channel pairs found.")
return list()
# find the picks corresponding to the grad channels
grad_chs = sum(pairs, [])
ch_names = info['ch_names']
picks = [ch_names.index(c['ch_name']) for c in grad_chs]
if topomap_coords:
shape = (len(pairs), 2, -1)
coords = (_find_topomap_coords(info, picks, layout)
.reshape(shape).mean(axis=1))
return picks, coords
else:
return picks
# this function is used to pair grad when info is not present
# it is the case of Projection that don't have the info.
def _pair_grad_sensors_from_ch_names(ch_names):
"""Find the indexes for pairing grad channels.
Parameters
----------
ch_names : list of str
A list of channel names.
Returns
-------
indexes : list of int
Indexes of the grad channels, ordered in pairs.
"""
pairs = defaultdict(list)
for i, name in enumerate(ch_names):
if name.startswith('MEG'):
if name.endswith(('2', '3')):
key = name[-4:-1]
pairs[key].append(i)
pairs = [p for p in pairs.values() if len(p) == 2]
grad_chs = sum(pairs, [])
return grad_chs
def _merge_grad_data(data, method='rms'):
"""Merge data from channel pairs using the RMS or mean.
Parameters
----------
data : array, shape = (n_channels, n_times)
Data for channels, ordered in pairs.
method : str
Can be 'rms' or 'mean'.
Returns
-------
data : array, shape = (n_channels / 2, n_times)
The root mean square or mean for each pair.
"""
data = data.reshape((len(data) // 2, 2, -1))
if method == 'mean':
data = np.mean(data, axis=1)
elif method == 'rms':
data = np.sqrt(np.sum(data ** 2, axis=1) / 2)
else:
raise ValueError('method must be "rms" or "mean, got %s.' % method)
return data
def generate_2d_layout(xy, w=.07, h=.05, pad=.02, ch_names=None,
ch_indices=None, name='ecog', bg_image=None,
normalize=True):
"""Generate a custom 2D layout from xy points.
Generates a 2-D layout for plotting with plot_topo methods and
functions. XY points will be normalized between 0 and 1, where
normalization extremes will be either the min/max of xy, or
the width/height of bg_image.
Parameters
----------
xy : ndarray (N x 2)
The xy coordinates of sensor locations.
w : float
The width of each sensor's axis (between 0 and 1)
h : float
The height of each sensor's axis (between 0 and 1)
pad : float
Portion of the box to reserve for padding. The value can range between
0.0 (boxes will touch, default) to 1.0 (boxes consist of only padding).
ch_names : list
The names of each channel. Must be a list of strings, with one
string per channel.
ch_indices : list
Index of each channel - must be a collection of unique integers,
one index per channel.
name : string
The name of this layout type.
bg_image : str | ndarray
The image over which sensor axes will be plotted. Either a path to an
image file, or an array that can be plotted with plt.imshow. If
provided, xy points will be normalized by the width/height of this
image. If not, xy points will be normalized by their own min/max.
normalize : bool
Whether to normalize the coordinates to run from 0 to 1. Defaults to
True.
Returns
-------
layout : Layout
A Layout object that can be plotted with plot_topo
functions and methods.
See Also
--------
make_eeg_layout, make_grid_layout
Notes
-----
.. versionadded:: 0.9.0
"""
from scipy.ndimage import imread
if ch_indices is None:
ch_indices = np.arange(xy.shape[0])
if ch_names is None:
ch_names = ['{0}'.format(i) for i in ch_indices]
if len(ch_names) != len(ch_indices):
raise ValueError('# ch names and indices must be equal')
if len(ch_names) != len(xy):
raise ValueError('# ch names and xy vals must be equal')
x, y = xy.copy().astype(float).T
# Normalize xy to 0-1
if bg_image is not None:
# Normalize by image dimensions
if isinstance(bg_image, str):
img = imread(bg_image)
else:
img = bg_image
x /= img.shape[1]
y /= img.shape[0]
elif normalize:
# Normalize x and y by their maxes
for i_dim in [x, y]:
i_dim -= i_dim.min(0)
i_dim /= (i_dim.max(0) - i_dim.min(0))
# Create box and pos variable
box = _box_size(np.vstack([x, y]).T, padding=pad)
box = (0, 0, box[0], box[1])
w, h = [np.array([i] * x.shape[0]) for i in [w, h]]
loc_params = np.vstack([x, y, w, h]).T
layout = Layout(box, loc_params, ch_names, ch_indices, name)
return layout