-
-
Notifications
You must be signed in to change notification settings - Fork 17.9k
/
ops.py
1432 lines (1182 loc) · 54.2 KB
/
ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""
Arithmetic operations for PandasObjects
This is not a public API.
"""
# necessary to enforce truediv in Python 2.X
from __future__ import division
import operator
import warnings
import numpy as np
import pandas as pd
import datetime
from pandas._libs import (lib, index as libindex,
tslib as libts, algos as libalgos, iNaT)
from pandas import compat
from pandas.util._decorators import Appender
from pandas.compat import bind_method
import pandas.core.missing as missing
from pandas.errors import PerformanceWarning
from pandas.core.common import _values_from_object, _maybe_match_name
from pandas.core.dtypes.missing import notna, isna
from pandas.core.dtypes.common import (
needs_i8_conversion,
is_datetimelike_v_numeric,
is_integer_dtype, is_categorical_dtype,
is_object_dtype, is_timedelta64_dtype,
is_datetime64_dtype, is_datetime64tz_dtype,
is_bool_dtype, is_datetimetz,
is_list_like,
is_scalar,
_ensure_object)
from pandas.core.dtypes.cast import maybe_upcast_putmask, find_common_type
from pandas.core.dtypes.generic import (
ABCSeries,
ABCDataFrame,
ABCIndex,
ABCPeriodIndex,
ABCDateOffset)
# -----------------------------------------------------------------------------
# Functions that add arithmetic methods to objects, given arithmetic factory
# methods
def _create_methods(arith_method, comp_method, bool_method,
use_numexpr, special=False, default_axis='columns',
have_divmod=False):
# creates actual methods based upon arithmetic, comp and bool method
# constructors.
# NOTE: Only frame cares about default_axis, specifically: special methods
# have default axis None, whereas flex methods have default axis 'columns'
# if we're not using numexpr, then don't pass a str_rep
if use_numexpr:
op = lambda x: x
else:
op = lambda x: None
if special:
def names(x):
if x[-1] == "_":
return "__{name}_".format(name=x)
else:
return "__{name}__".format(name=x)
else:
names = lambda x: x
# Inframe, all special methods have default_axis=None, flex methods have
# default_axis set to the default (columns)
# yapf: disable
new_methods = dict(
add=arith_method(operator.add, names('add'), op('+'),
default_axis=default_axis),
radd=arith_method(lambda x, y: y + x, names('radd'), op('+'),
default_axis=default_axis),
sub=arith_method(operator.sub, names('sub'), op('-'),
default_axis=default_axis),
mul=arith_method(operator.mul, names('mul'), op('*'),
default_axis=default_axis),
truediv=arith_method(operator.truediv, names('truediv'), op('/'),
truediv=True, fill_zeros=np.inf,
default_axis=default_axis),
floordiv=arith_method(operator.floordiv, names('floordiv'), op('//'),
default_axis=default_axis, fill_zeros=np.inf),
# Causes a floating point exception in the tests when numexpr enabled,
# so for now no speedup
mod=arith_method(operator.mod, names('mod'), None,
default_axis=default_axis, fill_zeros=np.nan),
pow=arith_method(operator.pow, names('pow'), op('**'),
default_axis=default_axis),
# not entirely sure why this is necessary, but previously was included
# so it's here to maintain compatibility
rmul=arith_method(operator.mul, names('rmul'), op('*'),
default_axis=default_axis, reversed=True),
rsub=arith_method(lambda x, y: y - x, names('rsub'), op('-'),
default_axis=default_axis, reversed=True),
rtruediv=arith_method(lambda x, y: operator.truediv(y, x),
names('rtruediv'), op('/'), truediv=True,
fill_zeros=np.inf, default_axis=default_axis,
reversed=True),
rfloordiv=arith_method(lambda x, y: operator.floordiv(y, x),
names('rfloordiv'), op('//'),
default_axis=default_axis, fill_zeros=np.inf,
reversed=True),
rpow=arith_method(lambda x, y: y**x, names('rpow'), op('**'),
default_axis=default_axis, reversed=True),
rmod=arith_method(lambda x, y: y % x, names('rmod'), op('%'),
default_axis=default_axis, fill_zeros=np.nan,
reversed=True),)
# yapf: enable
new_methods['div'] = new_methods['truediv']
new_methods['rdiv'] = new_methods['rtruediv']
# Comp methods never had a default axis set
if comp_method:
new_methods.update(dict(
eq=comp_method(operator.eq, names('eq'), op('==')),
ne=comp_method(operator.ne, names('ne'), op('!='), masker=True),
lt=comp_method(operator.lt, names('lt'), op('<')),
gt=comp_method(operator.gt, names('gt'), op('>')),
le=comp_method(operator.le, names('le'), op('<=')),
ge=comp_method(operator.ge, names('ge'), op('>=')), ))
if bool_method:
new_methods.update(
dict(and_=bool_method(operator.and_, names('and_'), op('&')),
or_=bool_method(operator.or_, names('or_'), op('|')),
# For some reason ``^`` wasn't used in original.
xor=bool_method(operator.xor, names('xor'), op('^')),
rand_=bool_method(lambda x, y: operator.and_(y, x),
names('rand_'), op('&')),
ror_=bool_method(lambda x, y: operator.or_(y, x),
names('ror_'), op('|')),
rxor=bool_method(lambda x, y: operator.xor(y, x),
names('rxor'), op('^'))))
if have_divmod:
# divmod doesn't have an op that is supported by numexpr
new_methods['divmod'] = arith_method(
divmod,
names('divmod'),
None,
default_axis=default_axis,
construct_result=_construct_divmod_result,
)
new_methods = dict((names(k), v) for k, v in new_methods.items())
return new_methods
def add_methods(cls, new_methods, force, select, exclude):
if select and exclude:
raise TypeError("May only pass either select or exclude")
if select:
select = set(select)
methods = {}
for key, method in new_methods.items():
if key in select:
methods[key] = method
new_methods = methods
if exclude:
for k in exclude:
new_methods.pop(k, None)
for name, method in new_methods.items():
if force or name not in cls.__dict__:
bind_method(cls, name, method)
# ----------------------------------------------------------------------
# Arithmetic
def add_special_arithmetic_methods(cls, arith_method=None,
comp_method=None, bool_method=None,
use_numexpr=True, force=False, select=None,
exclude=None, have_divmod=False):
"""
Adds the full suite of special arithmetic methods (``__add__``,
``__sub__``, etc.) to the class.
Parameters
----------
arith_method : function (optional)
factory for special arithmetic methods, with op string:
f(op, name, str_rep, default_axis=None, fill_zeros=None, **eval_kwargs)
comp_method : function (optional)
factory for rich comparison - signature: f(op, name, str_rep)
bool_method : function (optional)
factory for boolean methods - signature: f(op, name, str_rep)
use_numexpr : bool, default True
whether to accelerate with numexpr, defaults to True
force : bool, default False
if False, checks whether function is defined **on ``cls.__dict__``**
before defining if True, always defines functions on class base
select : iterable of strings (optional)
if passed, only sets functions with names in select
exclude : iterable of strings (optional)
if passed, will not set functions with names in exclude
have_divmod : bool, (optional)
should a divmod method be added? this method is special because it
returns a tuple of cls instead of a single element of type cls
"""
# in frame, special methods have default_axis = None, comp methods use
# 'columns'
new_methods = _create_methods(arith_method, comp_method,
bool_method, use_numexpr, default_axis=None,
special=True, have_divmod=have_divmod)
# inplace operators (I feel like these should get passed an `inplace=True`
# or just be removed
def _wrap_inplace_method(method):
"""
return an inplace wrapper for this method
"""
def f(self, other):
result = method(self, other)
# this makes sure that we are aligned like the input
# we are updating inplace so we want to ignore is_copy
self._update_inplace(result.reindex_like(self, copy=False)._data,
verify_is_copy=False)
return self
return f
new_methods.update(
dict(__iadd__=_wrap_inplace_method(new_methods["__add__"]),
__isub__=_wrap_inplace_method(new_methods["__sub__"]),
__imul__=_wrap_inplace_method(new_methods["__mul__"]),
__itruediv__=_wrap_inplace_method(new_methods["__truediv__"]),
__ifloordiv__=_wrap_inplace_method(new_methods["__floordiv__"]),
__imod__=_wrap_inplace_method(new_methods["__mod__"]),
__ipow__=_wrap_inplace_method(new_methods["__pow__"])))
if not compat.PY3:
new_methods["__idiv__"] = _wrap_inplace_method(new_methods["__div__"])
if bool_method:
new_methods.update(
dict(__iand__=_wrap_inplace_method(new_methods["__and__"]),
__ior__=_wrap_inplace_method(new_methods["__or__"]),
__ixor__=_wrap_inplace_method(new_methods["__xor__"])))
add_methods(cls, new_methods=new_methods, force=force, select=select,
exclude=exclude)
def add_flex_arithmetic_methods(cls, flex_arith_method,
flex_comp_method=None, flex_bool_method=None,
use_numexpr=True, force=False, select=None,
exclude=None):
"""
Adds the full suite of flex arithmetic methods (``pow``, ``mul``, ``add``)
to the class.
Parameters
----------
flex_arith_method : function
factory for special arithmetic methods, with op string:
f(op, name, str_rep, default_axis=None, fill_zeros=None, **eval_kwargs)
flex_comp_method : function, optional,
factory for rich comparison - signature: f(op, name, str_rep)
use_numexpr : bool, default True
whether to accelerate with numexpr, defaults to True
force : bool, default False
if False, checks whether function is defined **on ``cls.__dict__``**
before defining if True, always defines functions on class base
select : iterable of strings (optional)
if passed, only sets functions with names in select
exclude : iterable of strings (optional)
if passed, will not set functions with names in exclude
"""
# in frame, default axis is 'columns', doesn't matter for series and panel
new_methods = _create_methods(flex_arith_method,
flex_comp_method, flex_bool_method,
use_numexpr, default_axis='columns',
special=False)
new_methods.update(dict(multiply=new_methods['mul'],
subtract=new_methods['sub'],
divide=new_methods['div']))
# opt out of bool flex methods for now
for k in ('ror_', 'rxor', 'rand_'):
if k in new_methods:
new_methods.pop(k)
add_methods(cls, new_methods=new_methods, force=force, select=select,
exclude=exclude)
class _Op(object):
"""
Wrapper around Series arithmetic operations.
Generally, you should use classmethod ``_Op.get_op`` as an entry point.
This validates and coerces lhs and rhs depending on its dtype and
based on op. See _TimeOp also.
Parameters
----------
left : Series
lhs of op
right : object
rhs of op
name : str
name of op
na_op : callable
a function which wraps op
"""
fill_value = np.nan
wrap_results = staticmethod(lambda x: x)
dtype = None
def __init__(self, left, right, name, na_op):
self.left = left
self.right = right
self.name = name
self.na_op = na_op
self.lvalues = left
self.rvalues = right
@classmethod
def get_op(cls, left, right, name, na_op):
"""
Get op dispatcher, returns _Op or _TimeOp.
If ``left`` and ``right`` are appropriate for datetime arithmetic with
operation ``name``, processes them and returns a ``_TimeOp`` object
that stores all the required values. Otherwise, it will generate
either a ``_Op``, indicating that the operation is performed via
normal numpy path.
"""
is_timedelta_lhs = is_timedelta64_dtype(left)
is_datetime_lhs = (is_datetime64_dtype(left) or
is_datetime64tz_dtype(left))
if not (is_datetime_lhs or is_timedelta_lhs):
return _Op(left, right, name, na_op)
else:
return _TimeOp(left, right, name, na_op)
class _TimeOp(_Op):
"""
Wrapper around Series datetime/time/timedelta arithmetic operations.
Generally, you should use classmethod ``_Op.get_op`` as an entry point.
"""
fill_value = iNaT
def __init__(self, left, right, name, na_op):
super(_TimeOp, self).__init__(left, right, name, na_op)
lvalues = self._convert_to_array(left, name=name)
rvalues = self._convert_to_array(right, name=name, other=lvalues)
# left
self.is_offset_lhs = self._is_offset(left)
self.is_timedelta_lhs = is_timedelta64_dtype(lvalues)
self.is_datetime64_lhs = is_datetime64_dtype(lvalues)
self.is_datetime64tz_lhs = is_datetime64tz_dtype(lvalues)
self.is_datetime_lhs = (self.is_datetime64_lhs or
self.is_datetime64tz_lhs)
self.is_integer_lhs = left.dtype.kind in ['i', 'u']
self.is_floating_lhs = left.dtype.kind == 'f'
# right
self.is_offset_rhs = self._is_offset(right)
self.is_datetime64_rhs = is_datetime64_dtype(rvalues)
self.is_datetime64tz_rhs = is_datetime64tz_dtype(rvalues)
self.is_datetime_rhs = (self.is_datetime64_rhs or
self.is_datetime64tz_rhs)
self.is_timedelta_rhs = is_timedelta64_dtype(rvalues)
self.is_integer_rhs = rvalues.dtype.kind in ('i', 'u')
self.is_floating_rhs = rvalues.dtype.kind == 'f'
self._validate(lvalues, rvalues, name)
self.lvalues, self.rvalues = self._convert_for_datetime(lvalues,
rvalues)
def _validate(self, lvalues, rvalues, name):
# timedelta and integer mul/div
if ((self.is_timedelta_lhs and
(self.is_integer_rhs or self.is_floating_rhs)) or
(self.is_timedelta_rhs and
(self.is_integer_lhs or self.is_floating_lhs))):
if name not in ('__div__', '__truediv__', '__mul__', '__rmul__'):
raise TypeError("can only operate on a timedelta and an "
"integer or a float for division and "
"multiplication, but the operator [{name}] "
"was passed".format(name=name))
# 2 timedeltas
elif ((self.is_timedelta_lhs and
(self.is_timedelta_rhs or self.is_offset_rhs)) or
(self.is_timedelta_rhs and
(self.is_timedelta_lhs or self.is_offset_lhs))):
if name not in ('__div__', '__rdiv__', '__truediv__',
'__rtruediv__', '__add__', '__radd__', '__sub__',
'__rsub__'):
raise TypeError("can only operate on a timedeltas for addition"
", subtraction, and division, but the operator"
" [{name}] was passed".format(name=name))
# datetime and timedelta/DateOffset
elif (self.is_datetime_lhs and
(self.is_timedelta_rhs or self.is_offset_rhs)):
if name not in ('__add__', '__radd__', '__sub__'):
raise TypeError("can only operate on a datetime with a rhs of "
"a timedelta/DateOffset for addition and "
"subtraction, but the operator [{name}] was "
"passed".format(name=name))
elif (self.is_datetime_rhs and
(self.is_timedelta_lhs or self.is_offset_lhs)):
if name not in ('__add__', '__radd__', '__rsub__'):
raise TypeError("can only operate on a timedelta/DateOffset "
"with a rhs of a datetime for addition, "
"but the operator [{name}] was passed"
.format(name=name))
# 2 datetimes
elif self.is_datetime_lhs and self.is_datetime_rhs:
if name not in ('__sub__', '__rsub__'):
raise TypeError("can only operate on a datetimes for"
" subtraction, but the operator [{name}] was"
" passed".format(name=name))
# if tz's must be equal (same or None)
if getattr(lvalues, 'tz', None) != getattr(rvalues, 'tz', None):
raise ValueError("Incompatible tz's on datetime subtraction "
"ops")
elif ((self.is_timedelta_lhs or self.is_offset_lhs) and
self.is_datetime_rhs):
if name not in ('__add__', '__radd__'):
raise TypeError("can only operate on a timedelta/DateOffset "
"and a datetime for addition, but the operator"
" [{name}] was passed".format(name=name))
else:
raise TypeError('cannot operate on a series without a rhs '
'of a series/ndarray of type datetime64[ns] '
'or a timedelta')
def _convert_to_array(self, values, name=None, other=None):
"""converts values to ndarray"""
from pandas.core.tools.timedeltas import to_timedelta
ovalues = values
supplied_dtype = None
if not is_list_like(values):
values = np.array([values])
# if this is a Series that contains relevant dtype info, then use this
# instead of the inferred type; this avoids coercing Series([NaT],
# dtype='datetime64[ns]') to Series([NaT], dtype='timedelta64[ns]')
elif (isinstance(values, pd.Series) and
(is_timedelta64_dtype(values) or is_datetime64_dtype(values))):
supplied_dtype = values.dtype
inferred_type = lib.infer_dtype(values)
if (inferred_type in ('datetime64', 'datetime', 'date', 'time') or
is_datetimetz(inferred_type)):
# if we have a other of timedelta, but use pd.NaT here we
# we are in the wrong path
if (supplied_dtype is None and other is not None and
(other.dtype in ('timedelta64[ns]', 'datetime64[ns]')) and
isna(values).all()):
values = np.empty(values.shape, dtype='timedelta64[ns]')
values[:] = iNaT
# a datelike
elif isinstance(values, pd.DatetimeIndex):
values = values.to_series()
# datetime with tz
elif (isinstance(ovalues, datetime.datetime) and
hasattr(ovalues, 'tzinfo')):
values = pd.DatetimeIndex(values)
# datetime array with tz
elif is_datetimetz(values):
if isinstance(values, ABCSeries):
values = values._values
elif not (isinstance(values, (np.ndarray, ABCSeries)) and
is_datetime64_dtype(values)):
values = libts.array_to_datetime(values)
elif inferred_type in ('timedelta', 'timedelta64'):
# have a timedelta, convert to to ns here
values = to_timedelta(values, errors='coerce', box=False)
elif inferred_type == 'integer':
# py3 compat where dtype is 'm' but is an integer
if values.dtype.kind == 'm':
values = values.astype('timedelta64[ns]')
elif isinstance(values, pd.PeriodIndex):
values = values.to_timestamp().to_series()
elif name not in ('__truediv__', '__div__', '__mul__', '__rmul__'):
raise TypeError("incompatible type for a datetime/timedelta "
"operation [{name}]".format(name=name))
elif inferred_type == 'floating':
if (isna(values).all() and
name in ('__add__', '__radd__', '__sub__', '__rsub__')):
values = np.empty(values.shape, dtype=other.dtype)
values[:] = iNaT
return values
elif self._is_offset(values):
return values
else:
raise TypeError("incompatible type [{dtype}] for a "
"datetime/timedelta operation"
.format(dtype=np.array(values).dtype))
return values
def _convert_for_datetime(self, lvalues, rvalues):
from pandas.core.tools.timedeltas import to_timedelta
mask = isna(lvalues) | isna(rvalues)
# datetimes require views
if self.is_datetime_lhs or self.is_datetime_rhs:
# datetime subtraction means timedelta
if self.is_datetime_lhs and self.is_datetime_rhs:
if self.name in ('__sub__', '__rsub__'):
self.dtype = 'timedelta64[ns]'
else:
self.dtype = 'datetime64[ns]'
elif self.is_datetime64tz_lhs:
self.dtype = lvalues.dtype
elif self.is_datetime64tz_rhs:
self.dtype = rvalues.dtype
else:
self.dtype = 'datetime64[ns]'
# if adding single offset try vectorized path
# in DatetimeIndex; otherwise elementwise apply
def _offset(lvalues, rvalues):
if len(lvalues) == 1:
rvalues = pd.DatetimeIndex(rvalues)
lvalues = lvalues[0]
else:
warnings.warn("Adding/subtracting array of DateOffsets to "
"Series not vectorized", PerformanceWarning)
rvalues = rvalues.astype('O')
# pass thru on the na_op
self.na_op = lambda x, y: getattr(x, self.name)(y)
return lvalues, rvalues
if self.is_offset_lhs:
lvalues, rvalues = _offset(lvalues, rvalues)
elif self.is_offset_rhs:
rvalues, lvalues = _offset(rvalues, lvalues)
else:
# with tz, convert to UTC
if self.is_datetime64tz_lhs:
lvalues = lvalues.tz_convert('UTC').tz_localize(None)
if self.is_datetime64tz_rhs:
rvalues = rvalues.tz_convert('UTC').tz_localize(None)
lvalues = lvalues.view(np.int64)
rvalues = rvalues.view(np.int64)
# otherwise it's a timedelta
else:
self.dtype = 'timedelta64[ns]'
# convert Tick DateOffset to underlying delta
if self.is_offset_lhs:
lvalues = to_timedelta(lvalues, box=False)
if self.is_offset_rhs:
rvalues = to_timedelta(rvalues, box=False)
lvalues = lvalues.astype(np.int64)
if not self.is_floating_rhs:
rvalues = rvalues.astype(np.int64)
# time delta division -> unit less
# integer gets converted to timedelta in np < 1.6
if ((self.is_timedelta_lhs and self.is_timedelta_rhs) and
not self.is_integer_rhs and not self.is_integer_lhs and
self.name in ('__div__', '__truediv__')):
self.dtype = 'float64'
self.fill_value = np.nan
lvalues = lvalues.astype(np.float64)
rvalues = rvalues.astype(np.float64)
# if we need to mask the results
if mask.any():
def f(x):
# datetime64[ns]/timedelta64[ns] masking
try:
x = np.array(x, dtype=self.dtype)
except TypeError:
x = np.array(x, dtype='datetime64[ns]')
np.putmask(x, mask, self.fill_value)
return x
self.wrap_results = f
return lvalues, rvalues
def _is_offset(self, arr_or_obj):
""" check if obj or all elements of list-like is DateOffset """
if isinstance(arr_or_obj, ABCDateOffset):
return True
elif (is_list_like(arr_or_obj) and len(arr_or_obj) and
is_object_dtype(arr_or_obj)):
return all(isinstance(x, ABCDateOffset) for x in arr_or_obj)
return False
def _align_method_SERIES(left, right, align_asobject=False):
""" align lhs and rhs Series """
# ToDo: Different from _align_method_FRAME, list, tuple and ndarray
# are not coerced here
# because Series has inconsistencies described in #13637
if isinstance(right, ABCSeries):
# avoid repeated alignment
if not left.index.equals(right.index):
if align_asobject:
# to keep original value's dtype for bool ops
left = left.astype(object)
right = right.astype(object)
left, right = left.align(right, copy=False)
return left, right
def _construct_result(left, result, index, name, dtype):
return left._constructor(result, index=index, name=name, dtype=dtype)
def _construct_divmod_result(left, result, index, name, dtype):
"""divmod returns a tuple of like indexed series instead of a single series.
"""
constructor = left._constructor
return (
constructor(result[0], index=index, name=name, dtype=dtype),
constructor(result[1], index=index, name=name, dtype=dtype),
)
def _arith_method_SERIES(op, name, str_rep, fill_zeros=None, default_axis=None,
construct_result=_construct_result, **eval_kwargs):
"""
Wrapper function for Series arithmetic operations, to avoid
code duplication.
"""
def na_op(x, y):
import pandas.core.computation.expressions as expressions
try:
result = expressions.evaluate(op, str_rep, x, y, **eval_kwargs)
except TypeError:
if isinstance(y, (np.ndarray, ABCSeries, pd.Index)):
dtype = find_common_type([x.dtype, y.dtype])
result = np.empty(x.size, dtype=dtype)
mask = notna(x) & notna(y)
result[mask] = op(x[mask], _values_from_object(y[mask]))
elif isinstance(x, np.ndarray):
result = np.empty(len(x), dtype=x.dtype)
mask = notna(x)
result[mask] = op(x[mask], y)
else:
raise TypeError("{typ} cannot perform the operation "
"{op}".format(typ=type(x).__name__,
op=str_rep))
result, changed = maybe_upcast_putmask(result, ~mask, np.nan)
result = missing.fill_zeros(result, x, y, name, fill_zeros)
return result
def safe_na_op(lvalues, rvalues):
try:
with np.errstate(all='ignore'):
return na_op(lvalues, rvalues)
except Exception:
if isinstance(rvalues, ABCSeries):
if is_object_dtype(rvalues):
# if dtype is object, try elementwise op
return libalgos.arrmap_object(rvalues,
lambda x: op(lvalues, x))
else:
if is_object_dtype(lvalues):
return libalgos.arrmap_object(lvalues,
lambda x: op(x, rvalues))
raise
def wrapper(left, right, name=name, na_op=na_op):
if isinstance(right, ABCDataFrame):
return NotImplemented
left, right = _align_method_SERIES(left, right)
converted = _Op.get_op(left, right, name, na_op)
left, right = converted.left, converted.right
lvalues, rvalues = converted.lvalues, converted.rvalues
dtype = converted.dtype
wrap_results = converted.wrap_results
na_op = converted.na_op
if isinstance(rvalues, ABCSeries):
name = _maybe_match_name(left, rvalues)
lvalues = getattr(lvalues, 'values', lvalues)
rvalues = getattr(rvalues, 'values', rvalues)
# _Op aligns left and right
else:
name = left.name
if (hasattr(lvalues, 'values') and
not isinstance(lvalues, pd.DatetimeIndex)):
lvalues = lvalues.values
result = wrap_results(safe_na_op(lvalues, rvalues))
return construct_result(
left,
result,
index=left.index,
name=name,
dtype=dtype,
)
return wrapper
def _comp_method_OBJECT_ARRAY(op, x, y):
if isinstance(y, list):
y = lib.list_to_object_array(y)
if isinstance(y, (np.ndarray, ABCSeries, ABCIndex)):
if not is_object_dtype(y.dtype):
y = y.astype(np.object_)
if isinstance(y, (ABCSeries, ABCIndex)):
y = y.values
result = lib.vec_compare(x, y, op)
else:
result = lib.scalar_compare(x, y, op)
return result
def _comp_method_SERIES(op, name, str_rep, masker=False):
"""
Wrapper function for Series arithmetic operations, to avoid
code duplication.
"""
def na_op(x, y):
# dispatch to the categorical if we have a categorical
# in either operand
if is_categorical_dtype(x):
return op(x, y)
elif is_categorical_dtype(y) and not is_scalar(y):
return op(y, x)
if is_object_dtype(x.dtype):
result = _comp_method_OBJECT_ARRAY(op, x, y)
else:
# we want to compare like types
# we only want to convert to integer like if
# we are not NotImplemented, otherwise
# we would allow datetime64 (but viewed as i8) against
# integer comparisons
if is_datetimelike_v_numeric(x, y):
raise TypeError("invalid type comparison")
# numpy does not like comparisons vs None
if is_scalar(y) and isna(y):
if name == '__ne__':
return np.ones(len(x), dtype=bool)
else:
return np.zeros(len(x), dtype=bool)
# we have a datetime/timedelta and may need to convert
mask = None
if (needs_i8_conversion(x) or
(not is_scalar(y) and needs_i8_conversion(y))):
if is_scalar(y):
mask = isna(x)
y = libindex.convert_scalar(x, _values_from_object(y))
else:
mask = isna(x) | isna(y)
y = y.view('i8')
x = x.view('i8')
try:
with np.errstate(all='ignore'):
result = getattr(x, name)(y)
if result is NotImplemented:
raise TypeError("invalid type comparison")
except AttributeError:
result = op(x, y)
if mask is not None and mask.any():
result[mask] = masker
return result
def wrapper(self, other, axis=None):
# Validate the axis parameter
if axis is not None:
self._get_axis_number(axis)
if isinstance(other, ABCSeries):
name = _maybe_match_name(self, other)
if not self._indexed_same(other):
msg = 'Can only compare identically-labeled Series objects'
raise ValueError(msg)
return self._constructor(na_op(self.values, other.values),
index=self.index, name=name)
elif isinstance(other, ABCDataFrame): # pragma: no cover
return NotImplemented
elif isinstance(other, (np.ndarray, pd.Index)):
# do not check length of zerodim array
# as it will broadcast
if (not is_scalar(lib.item_from_zerodim(other)) and
len(self) != len(other)):
raise ValueError('Lengths must match to compare')
if isinstance(other, ABCPeriodIndex):
# temp workaround until fixing GH 13637
# tested in test_nat_comparisons
# (pandas.tests.series.test_operators.TestSeriesOperators)
return self._constructor(na_op(self.values,
other.asobject.values),
index=self.index)
return self._constructor(na_op(self.values, np.asarray(other)),
index=self.index).__finalize__(self)
elif isinstance(other, pd.Categorical):
if not is_categorical_dtype(self):
msg = ("Cannot compare a Categorical for op {op} with Series "
"of dtype {typ}.\nIf you want to compare values, use "
"'series <op> np.asarray(other)'.")
raise TypeError(msg.format(op=op, typ=self.dtype))
if is_categorical_dtype(self):
# cats are a special case as get_values() would return an ndarray,
# which would then not take categories ordering into account
# we can go directly to op, as the na_op would just test again and
# dispatch to it.
with np.errstate(all='ignore'):
res = op(self.values, other)
else:
values = self.get_values()
if isinstance(other, (list, np.ndarray)):
other = np.asarray(other)
with np.errstate(all='ignore'):
res = na_op(values, other)
if is_scalar(res):
raise TypeError('Could not compare {typ} type with Series'
.format(typ=type(other)))
# always return a full value series here
res = _values_from_object(res)
res = pd.Series(res, index=self.index, name=self.name, dtype='bool')
return res
return wrapper
def _bool_method_SERIES(op, name, str_rep):
"""
Wrapper function for Series arithmetic operations, to avoid
code duplication.
"""
def na_op(x, y):
try:
result = op(x, y)
except TypeError:
if isinstance(y, list):
y = lib.list_to_object_array(y)
if isinstance(y, (np.ndarray, ABCSeries)):
if (is_bool_dtype(x.dtype) and is_bool_dtype(y.dtype)):
result = op(x, y) # when would this be hit?
else:
x = _ensure_object(x)
y = _ensure_object(y)
result = lib.vec_binop(x, y, op)
else:
try:
# let null fall thru
if not isna(y):
y = bool(y)
result = lib.scalar_binop(x, y, op)
except:
msg = ("cannot compare a dtyped [{dtype}] array "
"with a scalar of type [{type}]"
).format(dtype=x.dtype, type=type(y).__name__)
raise TypeError(msg)
return result
def wrapper(self, other):
is_self_int_dtype = is_integer_dtype(self.dtype)
fill_int = lambda x: x.fillna(0)
fill_bool = lambda x: x.fillna(False).astype(bool)
self, other = _align_method_SERIES(self, other, align_asobject=True)
if isinstance(other, ABCSeries):
name = _maybe_match_name(self, other)
is_other_int_dtype = is_integer_dtype(other.dtype)
other = fill_int(other) if is_other_int_dtype else fill_bool(other)
filler = (fill_int if is_self_int_dtype and is_other_int_dtype
else fill_bool)
return filler(self._constructor(na_op(self.values, other.values),
index=self.index, name=name))
elif isinstance(other, ABCDataFrame):
return NotImplemented
else:
# scalars, list, tuple, np.array
filler = (fill_int if is_self_int_dtype and
is_integer_dtype(np.asarray(other)) else fill_bool)
return filler(self._constructor(
na_op(self.values, other),
index=self.index)).__finalize__(self)
return wrapper
_op_descriptions = {'add': {'op': '+',
'desc': 'Addition',
'reversed': False,
'reverse': 'radd'},
'sub': {'op': '-',
'desc': 'Subtraction',
'reversed': False,
'reverse': 'rsub'},
'mul': {'op': '*',
'desc': 'Multiplication',
'reversed': False,
'reverse': 'rmul'},
'mod': {'op': '%',
'desc': 'Modulo',
'reversed': False,
'reverse': 'rmod'},
'pow': {'op': '**',
'desc': 'Exponential power',
'reversed': False,
'reverse': 'rpow'},
'truediv': {'op': '/',
'desc': 'Floating division',
'reversed': False,
'reverse': 'rtruediv'},
'floordiv': {'op': '//',
'desc': 'Integer division',
'reversed': False,
'reverse': 'rfloordiv'},
'divmod': {'op': 'divmod',
'desc': 'Integer division and modulo',
'reversed': False,
'reverse': None},
'eq': {'op': '==',
'desc': 'Equal to',
'reversed': False,
'reverse': None},
'ne': {'op': '!=',
'desc': 'Not equal to',
'reversed': False,
'reverse': None},