Skip to content

Infineon/mtb-example-psoc6-emulated-eeprom

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PSoC™ 6 MCU: Emulated EEPROM

This example uses the Arm™ Cortex™-M4 (CM4) CPU of PSoC™ 6 MCU to execute two tasks: UART communication and emulate EEPROM behavior in flash memory. At device reset, the default Cortex®-M0+ (CM0+) application enables the CM4 CPU and configures the CM0+ CPU to go to sleep. In this example, a counter is read from the emulated EEPROM (Em_EEPROM), incremented, written back to Em_EEPROM, and printed over the UART. This occurs at every device reset or power cycle. As a result, the UART prints out an incrementing value at every reset.

View this README on GitHub.

Provide feedback on this code example.

Requirements

Supported toolchains (make variable 'TOOLCHAIN')

  • GNU Arm® Embedded Compiler v11.3.1 (GCC_ARM) – Default value of TOOLCHAIN
  • Arm® Compiler v6.16 (ARM)
  • IAR C/C++ Compiler v9.30.1 (IAR)

Supported kits (make variable 'TARGET')

Hardware setup

This example uses the board's default configuration. See the kit user guide to ensure that the board is configured correctly.

Note: The PSoC™ 6 Bluetooth® LE Pioneer Kit (CY8CKIT-062-BLE) and the PSoC™ 6 Wi-Fi Bluetooth® Pioneer Kit (CY8CKIT-062-WIFI-BT) ship with KitProg2 installed. ModusToolbox™ requires KitProg3. Before using this code example, make sure that the board is upgraded to KitProg3. The tool and instructions are available in the Firmware Loader GitHub repository. If you do not upgrade, you will see an error like "unable to find CMSIS-DAP device" or "KitProg firmware is out of date".

Software setup

See the ModusToolbox™ tools package installation guide for information about installing and configuring the tools package.

Install a terminal emulator if you don't have one. Instructions in this document use Tera Term.

This example requires no additional software or tools.

Using the code example

Create the project

The ModusToolbox™ tools package provides the Project Creator as both a GUI tool and a command line tool.

Use Project Creator GUI
  1. Open the Project Creator GUI tool.

    There are several ways to do this, including launching it from the dashboard or from inside the Eclipse IDE. For more details, see the Project Creator user guide (locally available at {ModusToolbox™ install directory}/tools_{version}/project-creator/docs/project-creator.pdf).

  2. On the Choose Board Support Package (BSP) page, select a kit supported by this code example. See Supported kits.

    Note: To use this code example for a kit not listed here, you may need to update the source files. If the kit does not have the required resources, the application may not work.

  3. On the Select Application page:

    a. Select the Applications(s) Root Path and the Target IDE.

    Note: Depending on how you open the Project Creator tool, these fields may be pre-selected for you.

    b. Select this code example from the list by enabling its check box.

    Note: You can narrow the list of displayed examples by typing in the filter box.

    c. (Optional) Change the suggested New Application Name and New BSP Name.

    d. Click Create to complete the application creation process.

Use Project Creator CLI

The 'project-creator-cli' tool can be used to create applications from a CLI terminal or from within batch files or shell scripts. This tool is available in the {ModusToolbox™ install directory}/tools_{version}/project-creator/ directory.

Use a CLI terminal to invoke the 'project-creator-cli' tool. On Windows, use the command-line 'modus-shell' program provided in the ModusToolbox™ installation instead of a standard Windows command-line application. This shell provides access to all ModusToolbox™ tools. You can access it by typing "modus-shell" in the search box in the Windows menu. In Linux and macOS, you can use any terminal application.

The following example will clone the "mtb-example-psoc6-emulated-eeprom" application with the desired name "EmulatedEeprom" configured for the CY8CPROTO-062S2-43439 BSP into the specified working directory, C:/mtb_projects:

project-creator-cli --board-id CY8CPROTO-062S2-43439 --app-id mtb-example-psoc6-emulated-eeprom --user-app-name EmulatedEeprom --target-dir "C:/mtb_projects"

The 'project-creator-cli' tool has the following arguments:

Argument Description Required/optional
--board-id Defined in the field of the BSP manifest Required
--app-id Defined in the field of the CE manifest Required
--target-dir Specify the directory in which the application is to be created if you prefer not to use the default current working directory Optional
--user-app-name Specify the name of the application if you prefer to have a name other than the example's default name Optional

Note: The project-creator-cli tool uses the git clone and make getlibs commands to fetch the repository and import the required libraries. For details, see the "Project creator tools" section of the ModusToolbox™ tools package user guide (locally available at {ModusToolbox™ install directory}/docs_{version}/mtb_user_guide.pdf).

Open the project

After the project has been created, you can open it in your preferred development environment.

Eclipse IDE

If you opened the Project Creator tool from the included Eclipse IDE, the project will open in Eclipse automatically.

For more details, see the Eclipse IDE for ModusToolbox™ user guide (locally available at {ModusToolbox™ install directory}/docs_{version}/mt_ide_user_guide.pdf).

Visual Studio (VS) Code

Launch VS Code manually, and then open the generated {project-name}.code-workspace file located in the project directory.

For more details, see the Visual Studio Code for ModusToolbox™ user guide (locally available at {ModusToolbox™ install directory}/docs_{version}/mt_vscode_user_guide.pdf).

Keil µVision

Double-click the generated {project-name}.cprj file to launch the Keil µVision IDE.

For more details, see the Keil µVision for ModusToolbox™ user guide (locally available at {ModusToolbox™ install directory}/docs_{version}/mt_uvision_user_guide.pdf).

IAR Embedded Workbench

Open IAR Embedded Workbench manually, and create a new project. Then select the generated {project-name}.ipcf file located in the project directory.

For more details, see the IAR Embedded Workbench for ModusToolbox™ user guide (locally available at {ModusToolbox™ install directory}/docs_{version}/mt_iar_user_guide.pdf).

Command line

If you prefer to use the CLI, open the appropriate terminal, and navigate to the project directory. On Windows, use the command-line 'modus-shell' program; on Linux and macOS, you can use any terminal application. From there, you can run various make commands.

For more details, see the ModusToolbox™ tools package user guide (locally available at {ModusToolbox™ install directory}/docs_{version}/mtb_user_guide.pdf).

Operation

If using a PSoC™ 64 "Secure" MCU kit (such as CY8CKIT-064B0S2-4343W), the PSoC™ 64 device must be provisioned with keys and policies before being programmed. Follow the instructions in the "Secure Boot" SDK user guide to provision the device. If the kit is already provisioned, copy-paste the keys and policy folder to the application folder.

In this example, EEPROM storage can be declared in either the application flash (user flash) or in the section of the flash dedicated for Em_EEPROM. The example uses the dedicated Em_EEPROM region of the flash for emulation by default. If you are using the user flash area for EEPROM emulation for PSoC™ 64 MCU, see the Placing the EEPROM array in user flash for CY8CKIT-064B0S2-4343W section before programming.

  1. Connect the board to your PC using the provided USB cable through the KitProg3 USB connector.

  2. Open a terminal program and select the KitProg3 COM port. Set the serial port parameters to 8N1 and 115200 baud.

  3. Program the board using one of the following:

    Using Eclipse IDE
    1. Select the application project in the Project Explorer.

    2. In the Quick Panel, scroll down, and click <Application Name> Program (KitProg3_MiniProg4).

    In other IDEs

    Follow the instructions in your preferred IDE.

    Using CLI

    From the terminal, execute the make program command to build and program the application using the default toolchain to the default target. The default toolchain is specified in the application's Makefile but you can override this value manually:

    make program TOOLCHAIN=<toolchain>
    

    Example:

    make program TOOLCHAIN=GCC_ARM
    
  4. After programming, the application starts automatically. Confirm that "<CE Title>" is displayed on the UART terminal.

Figure 1. Sample output showing incremental counter values

Debugging

You can debug the example to step through the code.

In Eclipse IDE

Use the <Application Name> Debug (KitProg3_MiniProg4) configuration in the Quick Panel. For details, see the "Program and debug" section in the Eclipse IDE for ModusToolbox™ user guide.

Add the below Note for relevant CEs only, like PSoC 6 MCU based. Remove this note for others.

Note: (Only while debugging) On the CM4 CPU, some code in main() may execute before the debugger halts at the beginning of main(). This means that some code executes twice – once before the debugger stops execution, and again after the debugger resets the program counter to the beginning of main(). See KBA231071 to learn about this and for the workaround.

In other IDEs

Follow the instructions in your preferred IDE.

Design and implementation

This example demonstrates how to use the Em_EEPROM middleware. The application also uses a serial communication block (SCB) resource, configured as UART.

On startup, the example initializes the SCB and the Em_EEPROM block in flash. Then, a read operation is performed to verify whether the data stored in EEPROM is valid. If valid, the counter is incremented by one and the new value of the counter is written back to the Em_EEPROM. Otherwise, the expected valid data is written to the Em_EEPROM. The firmware then reads the value in the Em_EEPROM and prints it to a terminal window via UART. Every time the device is reset or power is cycled, the counter is incremented and printed on serial terminal.

The firmware includes the declaration of the EEPROM storage and details of the EEPROM configuration and context structures. In this example, EEPROM storage can be declared in either the application flash (user flash) or in the section of the flash dedicated for Em_EEPROM. If the data is written to the user flash, a blocking write must be used. This is because a write to and read/execute from the same flash sector at the same time while using non-blocking writes may cause a HardFault exception. Either blocking or non-blocking write will work for the Em_EEPROM flash, because it is in a different flash sector. For more details, see Flash system routine (Flash) section in PDL documentation.

The example can choose either the user flash or a dedicated EEPROM area in the flash for EEPROM emulation. Set the FLASH_REGION_TO_USE macro as USER_FLASH or EMULATED_EEPROM_FLASH to store in the user flash or EEPROM area respectively. The example uses the dedicated EEPROM area of the flash for EEPROM emulation by default.

See the API reference quick start guide section for step-by-step instructions on how to enable the emulated EEPROM middleware library.

Note: The target kit CY8CKIT-062S4 doesn't have a dedicated EEPROM flash region, so this example will demonstrate emulation in the user flash region.

Placing the EEPROM array in user flash for CY8CKIT-064B0S2-4343W

In the case of CY8CKIT-064B0S2-4343W , post-build steps are executed which perform signing of the image as dictated by the policies provided by the user. Because the counter value in the EEPROM is incremented at every reset/power-cycle, a signature mismatch would occur if the EEPROM is within the image area (user flash area) that gets signed. Therefore, in order to prevent a signature mismatch, this example is configured to emulate the EEPROM at a fixed location outside the image area in the user flash as specified by the APP_DEFINED_EM_EEPROM_LOCATION_IN_FLASH macro. The EEPROM is placed at the end of the image area. This requires the size of the CM4 image to be modified in the policy.

To do this, open the default policy, policy/policy_single_CM0_CM4, in an editor and go to the CM4 application image boot and upgrade the policy. For the CM4 application image, the JSON field id is set as 16. Next, in the resources section, change the value of the size such that address + size = APP_DEFINED_EM_EEPROM_LOCATION_IN_FLASH.

Note: See the <BSP>.mk (e.g., CY8CKIT-064B0S2-4343W.mk) file in the BSP to know the default policy name. The CY_SECURE_POLICY_NAME make variable denotes the default policy name.

python -m pip install --upgrade --force-reinstall cysecuretools

Resources and settings

Table 1. Application resources

Resource Alias/object Purpose
UART (HAL) cy_retarget_io_uart_obj UART HAL object used by retarget-io for debug UART port
GPIO (HAL) CYBSP_USER_LED User LED to show visual indication of an error

Related resources

Resources Links
Application notes AN228571 – Getting started with PSoC™ 6 MCU on ModusToolbox™ software
AN215656 – PSoC™ 6 MCU: Dual-CPU system design
Code examples Using ModusToolbox™ on GitHub
Device documentation PSoC™ 6 MCU datasheets
PSoC™ 6 technical reference manuals
Development kits Select your kits from the Evaluation board finder.
Libraries on GitHub mtb-pdl-cat1 – PSoC™ 6 Peripheral Driver Library (PDL)
mtb-hal-cat1 – Hardware Abstraction Layer (HAL) library
retarget-io – Utility library to retarget STDIO messages to a UART port
Middleware on GitHub psoc6-middleware – Links to all PSoC™ 6 MCU middleware
Tools ModusToolbox™ – ModusToolbox™ software is a collection of easy-to-use libraries and tools enabling rapid development with Infineon MCUs for applications ranging from wireless and cloud-connected systems, edge AI/ML, embedded sense and control, to wired USB connectivity using PSoC™ Industrial/IoT MCUs, AIROC™ Wi-Fi and Bluetooth® connectivity devices, XMC™ Industrial MCUs, and EZ-USB™/EZ-PD™ wired connectivity controllers. ModusToolbox™ incorporates a comprehensive set of BSPs, HAL, libraries, configuration tools, and provides support for industry-standard IDEs to fast-track your embedded application development.

Other resources

Infineon provides a wealth of data at www.infineon.com to help you select the right device, and quickly and effectively integrate it into your design.

For PSoC™ 6 MCU devices, see How to design with PSoC™ 6 MCU - KBA223067 in the Infineon community.

Document history

Document title: CE195313PSoC™ 6 MCU: Emulated EEPROM

Version Description of change
1.0.0 New code example
1.1.0 Updated to support ModusToolbox™ software v2.1
2.0.0 Major update to support ModusToolbox™ software v2.2.
This version is not backward compatible with ModusToolbox™ software v2.1.
2.1.0 Updated to support ModusToolbox™ software v2.3
Added support for CY8CKIT-062S4.
2.2.0 Added support for CY8CEVAL-062S2, CY8CEVAL-062S2-LAI-4373M2 and CY8CPROTO-064B0S3
2.3.0 Removed target specific macros from the source code, removed support for CY8CPROTO-064B0S3
3.0.0 Major update to support ModusToolbox™ v3.0 and BSPs v4.X.
This version is not backward compatible with previous versions of ModusToolbox
3.1.0 Updated to support ModusToolbox™ v3.1 and added support for CY8CPROTO-062S2-43439, CY8CPROTO-064B0S3, CY8CPROTO-064S1-SB, CY8CEVAL-062S2-LAI-43439M2, CY8CEVAL-062S2-MUR-43439M2, CY8CEVAL-062S2-MUR-4373M2, CY8CEVAL-062S2-MUR-4373EM2

All referenced product or service names and trademarks are the property of their respective owners.

The Bluetooth® word mark and logos are registered trademarks owned by Bluetooth SIG, Inc., and any use of such marks by Infineon is under license.


© Cypress Semiconductor Corporation, 2020-2024. This document is the property of Cypress Semiconductor Corporation, an Infineon Technologies company, and its affiliates ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.
TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress shall have no liability arising out of any security breach, such as unauthorized access to or use of a Cypress product. CYPRESS DOES NOT REPRESENT, WARRANT, OR GUARANTEE THAT CYPRESS PRODUCTS, OR SYSTEMS CREATED USING CYPRESS PRODUCTS, WILL BE FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (collectively, "Security Breach"). Cypress disclaims any liability relating to any Security Breach, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any Security Breach. In addition, the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. "High-Risk Device" means any device or system whose failure could cause personal injury, death, or property damage. Examples of High-Risk Devices are weapons, nuclear installations, surgical implants, and other medical devices. "Critical Component" means any component of a High-Risk Device whose failure to perform can be reasonably expected to cause, directly or indirectly, the failure of the High-Risk Device, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any use of a Cypress product as a Critical Component in a High-Risk Device. You shall indemnify and hold Cypress, including its affiliates, and its directors, officers, employees, agents, distributors, and assigns harmless from and against all claims, costs, damages, and expenses, arising out of any claim, including claims for product liability, personal injury or death, or property damage arising from any use of a Cypress product as a Critical Component in a High-Risk Device. Cypress products are not intended or authorized for use as a Critical Component in any High-Risk Device except to the limited extent that (i) Cypress's published data sheet for the product explicitly states Cypress has qualified the product for use in a specific High-Risk Device, or (ii) Cypress has given you advance written authorization to use the product as a Critical Component in the specific High-Risk Device and you have signed a separate indemnification agreement.
Cypress, the Cypress logo, and combinations thereof, ModusToolbox, PSoC, CAPSENSE, EZ-USB, F-RAM, and TRAVEO are trademarks or registered trademarks of Cypress or a subsidiary of Cypress in the United States or in other countries. For a more complete list of Cypress trademarks, visit www.infineon.com. Other names and brands may be claimed as property of their respective owners.

About

This code example demonstrates emulation of EEPROM behavior in flash memory of PSoC 6 MCU using emeeprom middleware.

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published