-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
eog.py
217 lines (182 loc) · 7.96 KB
/
eog.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
# Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
# Denis Engemann <denis.engemann@gmail.com>
# Eric Larson <larson.eric.d@gmail.com>
#
# License: BSD (3-clause)
import numpy as np
from .peak_finder import peak_finder
from .. import pick_types, pick_channels
from ..utils import logger, verbose, _pl
from ..filter import filter_data
from ..epochs import Epochs
from ..externals.six import string_types
@verbose
def find_eog_events(raw, event_id=998, l_freq=1, h_freq=10,
filter_length='10s', ch_name=None, tstart=0,
verbose=None):
"""Locate EOG artifacts.
Parameters
----------
raw : instance of Raw
The raw data.
event_id : int
The index to assign to found events.
l_freq : float
Low cut-off frequency in Hz.
h_freq : float
High cut-off frequency in Hz.
filter_length : str | int | None
Number of taps to use for filtering.
ch_name: str | None
If not None, use specified channel(s) for EOG
tstart : float
Start detection after tstart seconds.
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
eog_events : array
Events.
"""
# Getting EOG Channel
eog_inds = _get_eog_channel_index(ch_name, raw)
logger.info('EOG channel index for this subject is: %s' % eog_inds)
eog, _ = raw[eog_inds, :]
eog_events = _find_eog_events(eog, event_id=event_id, l_freq=l_freq,
h_freq=h_freq,
sampling_rate=raw.info['sfreq'],
first_samp=raw.first_samp,
filter_length=filter_length,
tstart=tstart)
return eog_events
def _find_eog_events(eog, event_id, l_freq, h_freq, sampling_rate, first_samp,
filter_length='10s', tstart=0.):
"""Find EOG events."""
logger.info('Filtering the data to remove DC offset to help '
'distinguish blinks from saccades')
# filtering to remove dc offset so that we know which is blink and saccades
fmax = np.minimum(45, sampling_rate / 2.0 - 0.75) # protect Nyquist
filteog = np.array([filter_data(
x, sampling_rate, 2, fmax, None, filter_length, 0.5, 0.5,
phase='zero-double', fir_window='hann') for x in eog])
temp = np.sqrt(np.sum(filteog ** 2, axis=1))
indexmax = np.argmax(temp)
# easier to detect peaks with filtering.
filteog = filter_data(
eog[indexmax], sampling_rate, l_freq, h_freq, None,
filter_length, 0.5, 0.5, phase='zero-double', fir_window='hann')
# detecting eog blinks and generating event file
logger.info('Now detecting blinks and generating corresponding events')
temp = filteog - np.mean(filteog)
n_samples_start = int(sampling_rate * tstart)
if np.abs(np.max(temp)) > np.abs(np.min(temp)):
eog_events, _ = peak_finder(filteog[n_samples_start:], extrema=1)
else:
eog_events, _ = peak_finder(filteog[n_samples_start:], extrema=-1)
eog_events += n_samples_start
n_events = len(eog_events)
logger.info("Number of EOG events detected : %d" % n_events)
eog_events = np.array([eog_events + first_samp,
np.zeros(n_events, int),
event_id * np.ones(n_events, int)]).T
return eog_events
def _get_eog_channel_index(ch_name, inst):
"""Get EOG channel index."""
if isinstance(ch_name, string_types):
# Check if multiple EOG Channels
if ',' in ch_name:
ch_name = ch_name.split(',')
else:
ch_name = [ch_name]
eog_inds = pick_channels(inst.ch_names, include=ch_name)
if len(eog_inds) == 0:
raise ValueError('%s not in channel list' % ch_name)
else:
logger.info('Using channel %s as EOG channel%s' % (
" and ".join(ch_name), _pl(eog_inds)))
elif ch_name is None:
eog_inds = pick_types(inst.info, meg=False, eeg=False, stim=False,
eog=True, ecg=False, emg=False, ref_meg=False,
exclude='bads')
if len(eog_inds) == 0:
logger.info('No EOG channels found')
logger.info('Trying with EEG 061 and EEG 062')
eog_inds = pick_channels(inst.ch_names,
include=['EEG 061', 'EEG 062'])
if len(eog_inds) != 2:
raise RuntimeError('EEG 61 or EEG 62 channel not found !!')
else:
raise ValueError('Could not find EOG channel.')
return eog_inds
@verbose
def create_eog_epochs(raw, ch_name=None, event_id=998, picks=None, tmin=-0.5,
tmax=0.5, l_freq=1, h_freq=10, reject=None, flat=None,
baseline=None, preload=True, reject_by_annotation=True,
verbose=None):
"""Conveniently generate epochs around EOG artifact events.
Parameters
----------
raw : instance of Raw
The raw data
ch_name : str
The name of the channel to use for EOG peak detection.
The argument is mandatory if the dataset contains no EOG channels.
event_id : int
The index to assign to found events
picks : array-like of int | None (default)
Indices of channels to include (if None, all channels
are used).
tmin : float
Start time before event.
tmax : float
End time after event.
l_freq : float
Low pass frequency.
h_freq : float
High pass frequency.
reject : dict | None
Rejection parameters based on peak-to-peak amplitude.
Valid keys are 'grad' | 'mag' | 'eeg' | 'eog' | 'ecg'.
If reject is None then no rejection is done. Example::
reject = dict(grad=4000e-13, # T / m (gradiometers)
mag=4e-12, # T (magnetometers)
eeg=40e-6, # V (EEG channels)
eog=250e-6 # V (EOG channels)
)
flat : dict | None
Rejection parameters based on flatness of signal.
Valid keys are 'grad' | 'mag' | 'eeg' | 'eog' | 'ecg', and values
are floats that set the minimum acceptable peak-to-peak amplitude.
If flat is None then no rejection is done.
baseline : tuple or list of length 2, or None
The time interval to apply rescaling / baseline correction.
If None do not apply it. If baseline is (a, b)
the interval is between "a (s)" and "b (s)".
If a is None the beginning of the data is used
and if b is None then b is set to the end of the interval.
If baseline is equal ot (None, None) all the time
interval is used. If None, no correction is applied.
preload : bool
Preload epochs or not.
reject_by_annotation : bool
Whether to reject based on annotations. If True (default), epochs
overlapping with segments whose description begins with ``'bad'`` are
rejected. If False, no rejection based on annotations is performed.
.. versionadded:: 0.14.0
verbose : bool, str, int, or None
If not None, override default verbose level (see :func:`mne.verbose`
and :ref:`Logging documentation <tut_logging>` for more).
Returns
-------
eog_epochs : instance of Epochs
Data epoched around EOG events.
"""
events = find_eog_events(raw, ch_name=ch_name, event_id=event_id,
l_freq=l_freq, h_freq=h_freq)
# create epochs around EOG events
eog_epochs = Epochs(raw, events=events, event_id=event_id, tmin=tmin,
tmax=tmax, proj=False, reject=reject, flat=flat,
picks=picks, baseline=baseline, preload=preload,
reject_by_annotation=reject_by_annotation)
return eog_epochs