Skip to content

Commit

Permalink
Implement ComputeSquaredDistance for TransformList.
Browse files Browse the repository at this point in the history
  • Loading branch information
BorisChiou committed Aug 17, 2017
1 parent 03e1794 commit 3a5cbfb
Showing 1 changed file with 174 additions and 4 deletions.
178 changes: 174 additions & 4 deletions components/style/properties/helpers/animated_properties.mako.rs
Expand Up @@ -8,7 +8,7 @@

use app_units::Au;
use cssparser::Parser;
use euclid::{Point2D, Size2D};
use euclid::{Point2D, Point3D, Size2D};
#[cfg(feature = "gecko")] use gecko_bindings::bindings::RawServoAnimationValueMap;
#[cfg(feature = "gecko")] use gecko_bindings::structs::RawGeckoGfxMatrix4x4;
#[cfg(feature = "gecko")] use gecko_bindings::structs::nsCSSPropertyID;
Expand Down Expand Up @@ -1794,6 +1794,67 @@ pub struct MatrixDecomposed3D {
pub quaternion: Quaternion,
}

/// A wrapper of Point3D to represent the direction vector (rotate axis) for Rotate3D.
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "servo", derive(HeapSizeOf))]
pub struct DirectionVector(Point3D<f64>);

impl Quaternion {
/// Return a quaternion from a unit direction vector and angle (unit: radian).
#[inline]
fn from_direction_and_angle(vector: &DirectionVector, angle: f64) -> Self {
debug_assert!((vector.length() - 1.).abs() < 0.0001f64,
"Only accept an unit direction vector to create a quaternion");
// Reference:
// https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation
//
// if the direction axis is (x, y, z) = xi + yj + zk,
// and the angle is |theta|, this formula can be done using
// an extension of Euler's formula:
// q = cos(theta/2) + (xi + yj + zk)(sin(theta/2))
// = cos(theta/2) +
// x*sin(theta/2)i + y*sin(theta/2)j + z*sin(theta/2)k
Quaternion(vector.0.x * (angle / 2.).sin(),
vector.0.y * (angle / 2.).sin(),
vector.0.z * (angle / 2.).sin(),
(angle / 2.).cos())
}

/// Calculate the dot product.
#[inline]
fn dot(&self, other: &Self) -> f64 {
self.0 * other.0 + self.1 * other.1 + self.2 * other.2 + self.3 * other.3
}
}

impl DirectionVector {
/// Create a DirectionVector.
#[inline]
fn new(x: f64, y: f64, z: f64) -> Self {
DirectionVector(Point3D::new(x, y, z))
}

/// Return the normalized direction vector.
#[inline]
fn normalize(&mut self) -> bool {
let len = self.length();
if len > 0. {
self.0.x = self.0.x / len;
self.0.y = self.0.y / len;
self.0.z = self.0.z / len;
true
} else {
false
}
}

/// Get the length of this vector.
#[inline]
fn length(&self) -> f64 {
self.0.to_array().iter().fold(0f64, |sum, v| sum + v * v).sqrt()
}
}

/// Decompose a 3D matrix.
/// https://drafts.csswg.org/css-transforms/#decomposing-a-3d-matrix
fn decompose_3d_matrix(mut matrix: ComputedMatrix) -> Result<MatrixDecomposed3D, ()> {
Expand Down Expand Up @@ -2362,11 +2423,120 @@ impl Animatable for TransformList {
}
}

/// A helper function to retrieve the pixel length and percentage value.
fn extract_pixel_calc_value(lop: &LengthOrPercentage) -> (f64, CSSFloat) {
match lop {
&LengthOrPercentage::Length(au) => (au.to_f64_px(), 0.),
&LengthOrPercentage::Percentage(percent) => (0., percent.0),
&LengthOrPercentage::Calc(calc) => (calc.length().to_f64_px(), calc.percentage())
}
}

/// Compute the squared distance of two transform lists.
// This might not be the most useful definition of distance. It might be better, for example,
// to trace the distance travelled by a point as its transform is interpolated between the two
// lists. That, however, proves to be quite complicated so we take a simple approach for now.
// See https://bugzilla.mozilla.org/show_bug.cgi?id=1318591#c0.
fn compute_transform_lists_squared_distance(from_list: &[TransformOperation],
to_list: &[TransformOperation])
-> Result<SquaredDistance, ()> {
let zero_distance = SquaredDistance::Value(0.);
let squared_distance = from_list.iter().zip(to_list.iter()).map(|(from, to)| {
match (from, to) {
(&TransformOperation::Matrix(_from),
&TransformOperation::Matrix(_to)) => {
// TODO: decompose matrix.
zero_distance
}
(&TransformOperation::Skew(fx, fy),
&TransformOperation::Skew(tx, ty)) => {
fx.compute_squared_distance(&tx).unwrap_or(zero_distance) +
fy.compute_squared_distance(&ty).unwrap_or(zero_distance)
}
(&TransformOperation::Translate(fx, fy, fz),
&TransformOperation::Translate(tx, ty, tz)) => {
// We don't want to require doing layout in order to calculate the result, so
// drop the percentage part. However, dropping percentage makes us impossible to
// compute the distance for the percentage-percentage case, but Gecko uses the
// same formula, so it's fine for now.
// Note: We use pixel value to compute the distance for translate, so we have to
// convert Au into px.
let diff_x = fx.add_weighted(&tx, 1., -1.).unwrap_or(LengthOrPercentage::zero());
let diff_y = fy.add_weighted(&ty, 1., -1.).unwrap_or(LengthOrPercentage::zero());
let (diff_x_length, _) = extract_pixel_calc_value(&diff_x);
let (diff_y_length, _) = extract_pixel_calc_value(&diff_y);
SquaredDistance::Value(diff_x_length * diff_x_length) +
SquaredDistance::Value(diff_y_length * diff_y_length) +
fz.to_f64_px().compute_squared_distance(&tz.to_f64_px()).unwrap_or(zero_distance)
}
(&TransformOperation::Scale(fx, fy, fz),
&TransformOperation::Scale(tx, ty, tz)) => {
fx.compute_squared_distance(&tx).unwrap_or(zero_distance) +
fy.compute_squared_distance(&ty).unwrap_or(zero_distance) +
fz.compute_squared_distance(&tz).unwrap_or(zero_distance)
}
(&TransformOperation::Rotate(fx, fy, fz, fa),
&TransformOperation::Rotate(tx, ty, tz, ta)) => {
// A direction vector that cannot be normalized, such as [0,0,0], will cause the
// rotation to not be applied. i.e. Use an identity matrix or rotate3d(0, 0, 1, 0).
let get_normalized_vector_and_angle = |x: f32, y: f32, z: f32, angle: Angle|
-> (DirectionVector, Angle) {
let mut vector = DirectionVector::new(x as f64, y as f64, z as f64);
if vector.normalize() {
(vector, angle)
} else {
(DirectionVector::new(0., 0., 1.), Angle::zero())
}
};

let (vector1, angle1) = get_normalized_vector_and_angle(fx, fy, fz, fa);
let (vector2, angle2) = get_normalized_vector_and_angle(tx, ty, tz, ta);
if vector1 == vector2 {
angle1.compute_squared_distance(&angle2).unwrap_or(zero_distance)
} else {
// Use quaternion vectors to get the angle difference. Both q1 and q2
// are unit vectors, so we can get their angle difference by
// cos(theta/2) = (q1 dot q2) / (|q1| * |q2|) = q1 dot q2.
let q1 = Quaternion::from_direction_and_angle(&vector1, angle1.radians64());
let q2 = Quaternion::from_direction_and_angle(&vector2, angle2.radians64());
let dist = q1.dot(&q2).max(-1.).min(1.).acos() * 2.0;
SquaredDistance::Value(dist * dist)
}
}
(&TransformOperation::Perspective(_fd),
&TransformOperation::Perspective(_td)) => {
// TODO: decompose matrix.
zero_distance
}
_ => {
// We don't support computation of distance for InterpolateMatrix and
// AccumulateMatrix.
zero_distance
}
}
}).sum();

Ok(squared_distance)
}

impl ComputeSquaredDistance for TransformList {
#[inline]
fn compute_squared_distance(&self, _other: &Self) -> Result<SquaredDistance, ()> {
// FIXME: This should be implemented.
Err(())
fn compute_squared_distance(&self, other: &Self) -> Result<SquaredDistance, ()> {
match (self.0.as_ref(), other.0.as_ref()) {
(Some(from_list), Some(to_list)) => {
if can_interpolate_list(from_list, to_list) {
compute_transform_lists_squared_distance(from_list, to_list)
} else {
// Bug 1390039: we don't handle mismatch transform lists for now.
Err(())
}
},
(Some(list), None) | (None, Some(list)) => {
let none = build_identity_transform_list(list);
compute_transform_lists_squared_distance(list, &none)
}
_ => Ok(SquaredDistance::Value(0.))
}
}
}

Expand Down

0 comments on commit 3a5cbfb

Please sign in to comment.