-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathbifdPar.Rd
134 lines (119 loc) · 3.96 KB
/
bifdPar.Rd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
\name{bifdPar}
\alias{bifdPar}
\title{
Define a Bivariate Functional Parameter Object
}
\description{
Functional parameter objects are used as arguments to functions that
estimate functional parameters, such as smoothing functions like
\code{smooth.basis}. A bivariate functional parameter object supplies
the analogous information required for smoothing bivariate data using
a bivariate functional data object $x(s,t)$. The arguments are the same as
those for \code{fdPar} objects, except that two linear differential
operator objects and two smoothing parameters must be applied,
each pair corresponding to one of the arguments $s$ and $t$ of the
bivariate functional data object.
}
\usage{
bifdPar(bifdobj, Lfdobjs=int2Lfd(2), Lfdobjt=int2Lfd(2), lambdas=0, lambdat=0,
estimate=TRUE)
}
\arguments{
\item{bifdobj}{
a bivariate functional data object.
}
\item{Lfdobjs}{
either a nonnegative integer or a linear differential operator
object for the first argument $s$.
If \code{NULL}, Lfdobjs depends on bifdobj[['sbasis']][['type']]:
\describe{
\item{bspline}{
Lfdobjs <- int2Lfd(max(0, norder-2)), where norder =
norder(bifdobj[['sbasis']]).
}
\item{fourier}{
Lfdobjs = a harmonic acceleration operator:
\code{Lfdobj <- vec2Lfd(c(0,(2*pi/diff(rngs))^2,0), rngs)}
where rngs = bifdobj[['sbasis']][['rangeval']].
}
\item{anything else}{Lfdobj <- int2Lfd(0)}
}
}
\item{Lfdobjt}{
either a nonnegative integer or a linear differential operator
object for the first argument $t$.
If \code{NULL}, Lfdobjt depends on bifdobj[['tbasis']][['type']]:
\describe{
\item{bspline}{
Lfdobj <- int2Lfd(max(0, norder-2)), where norder =
norder(bifdobj[['tbasis']]).
}
\item{fourier}{
Lfdobj = a harmonic acceleration operator:
\code{Lfdobj <- vec2Lfd(c(0,(2*pi/diff(rngt))^2,0), rngt)}
where rngt = bifdobj[['tbasis']][['rangeval']].
}
\item{anything else}{Lfdobj <- int2Lfd(0)}
}
}
\item{lambdas}{
a nonnegative real number specifying the amount of smoothing
to be applied to the estimated functional parameter $x(s,t)$
as a function of $s$..
}
\item{lambdat}{
a nonnegative real number specifying the amount of smoothing
to be applied to the estimated functional parameter $x(s,t)$
as a function of $t$..
}
\item{estimate}{not currently used.}
}
\value{
a bivariate functional parameter object (i.e., an object of class
\code{bifdPar}), which is a list with the following components:
\item{bifd}{
a functional data object (i.e., with class \code{bifd})
}
\item{Lfdobjs}{
a linear differential operator object (i.e., with class
\code{Lfdobjs})
}
\item{Lfdobjt}{
a linear differential operator object (i.e., with class
\code{Lfdobjt})
}
\item{lambdas}{
a nonnegative real number
}
\item{lambdat}{
a nonnegative real number
}
\item{estimate}{not currently used}
}
\references{
Ramsay, James O., Hooker, Giles, and Graves, Spencer (2009),
\emph{Functional data analysis with R and Matlab}, Springer, New
York.
Ramsay, James O., and Silverman, Bernard W. (2005), \emph{Functional
Data Analysis, 2nd ed.}, Springer, New York.
Ramsay, James O., and Silverman, Bernard W. (2002), \emph{Applied
Functional Data Analysis}, Springer, New York.
}
\seealso{
\code{\link{linmod}}
}
\source{
Ramsay, James O., Hooker, Giles, and Graves, Spencer (2009)
\emph{Functional Data Analysis in R and Matlab}, Springer, New York.
Ramsay, James O., and Silverman, Bernard W. (2005), \emph{Functional
Data Analysis, 2nd ed.}, Springer, New York.
Ramsay, James O., and Silverman, Bernard W. (2002), \emph{Applied
Functional Data Analysis}, Springer, New York
}
\examples{
#See the prediction of precipitation using temperature as
#the independent variable in the analysis of the daily weather
#data, and the analysis of the Swedish mortality data.
}
% docclass is function
\keyword{bivariate smooth}