-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathcovPACE.Rd
executable file
·64 lines (62 loc) · 2.17 KB
/
covPACE.Rd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
\name{covPACE}
\alias{covPACE}
\title{
Estimate of the covariance surface
}
\description{
Function \code{covPACE} does a bivariate smoothing for estimating the
covariance surface for data that has not yet been smoothed
}
\usage{
covPACE(data,rng , time, meanfd, basis, lambda, Lfdobj)
}
\arguments{
\item{data}{
a matrix object or list -- If the set is supplied as a matrix object,
the rows must correspond to argument values and columns to replications,
and it will be assumed that there is only one variable per observation.
If y is a three-dimensional array, the first dimension corresponds to
argument values, the second to replications, and the third to variables
within replications. -- If it is a list, each element must be a matrix
object, the rows correspond to argument values per individual. First
column corresponds to time points and following columns to argument values
per variable.
}
\item{rng}{
a vector of length 2 defining a restricted range where the data was observed
}
\item{time}{
Array with time points where data was taken. \code{length(time) == dim(data)[1]}
}
\item{meanfd}{
Fd object corresponding to the mean function of the data
}
\item{basis}{
basisfd object for smoothing the covariate function
}
\item{lambda}{
a nonnegative real number specifying the amount of smoothing to be applied to
the estimated functional parameter
}
\item{Lfdobj}{
a linear differential operator object for smoothing penalty of the estimated
functional parameter
}
}
\value{
a list with these two named entries:
\item{cov.estimate}{
an object of class "bifd" object or a list of "bifd" elements
}
\item{meanfd}{
a functional data object giving the mean function
}
}
\references{
Ramsay, James O., Hooker, Giles, and Graves, Spencer (2009),
\emph{Functional data analysis with R and Matlab}, Springer, New York.
Ramsay, James O., and Silverman, Bernard W. (2005),
\emph{Functional Data Analysis, 2nd ed.}, Springer, New York.
Ramsay, James O., and Silverman, Bernard W. (2002),
\emph{Applied Functional Data Analysis}, Springer, New York.
}