-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathfRegress.CV.Rd
78 lines (75 loc) · 2.57 KB
/
fRegress.CV.Rd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
\name{fRegress.CV}
\alias{fRegress.CV}
\title{
Computes Cross-validated Error Sum of Integrated Squared Errors for a
Functional Regression Model
}
\description{
For a functional regression model, a cross-validated error sum of
squares is computed. For a functional dependent variable this is the
sum of integrated squared errors. For a scalar response, this function
has been superseded by the OCV and gcv elements returned by
\code{fRegress}. This function aids the choice of smoothing parameters
in this model using the cross-validated error sum of squares
criterion.
}
\usage{
#fRegress.CV(y, xfdlist, betalist, wt=NULL, CVobs=1:N,
# returnMatrix=FALSE, ...)
#NOTE: The following is required by CRAN rules that
# function names like "as.numeric" must follow the documentation
# standards for S3 generics, even when they are not.
# Please ignore the following line:
\method{fRegress}{CV}(y, xfdlist, betalist, wt=NULL, CVobs=1:N,
returnMatrix=FALSE, ...)
}
\arguments{
\item{y}{
the dependent variable object.
}
\item{xfdlist}{
a list whose members are functional parameter objects specifying
functional independent variables. Some of these may also be vectors
specifying scalar independent variables.
}
\item{betalist}{
a list containing functional parameter objects specifying the
regression functions and their level of smoothing.
}
\item{wt}{
weights for weighted least squares. Defaults to all 1's.
}
\item{CVobs}{
Indices of observations to be deleted. Defaults to 1:N.
}
\item{returnMatrix}{
logical: If TRUE, a two-dimensional is returned using a
special class from the Matrix package.
}
\item{\dots}{
optional arguments not used by \code{fRegress.CV} but needed for
superficial compatibility with \code{fRegress} methods.
}
}
\value{
A list containing
\item{SSE.CV}{ The sum of squared errors, or integrated squared errors}
\item{errfd.cv}{ Either a vector or a functional data object giving the
cross-validated errors }
}
\references{
Ramsay, James O., Hooker, Giles, and Graves, Spencer (2009),
\emph{Functional data analysis with R and Matlab}, Springer, New York.
Ramsay, James O., and Silverman, Bernard W. (2005),
\emph{Functional Data Analysis, 2nd ed.}, Springer, New York.
Ramsay, James O., and Silverman, Bernard W. (2002),
\emph{Applied Functional Data Analysis}, Springer, New York.
}
\seealso{
\code{\link{fRegress}},
\code{\link{fRegress.stderr}}
}
\examples{
#. See the analyses of the Canadian daily weather data.
}
\keyword{smooth}