-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathfRegress.stderr.Rd
81 lines (79 loc) · 3.26 KB
/
fRegress.stderr.Rd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
\name{fRegress.stderr}
\alias{fRegress.stderr}
\title{
Compute Standard errors of Coefficient Functions Estimated by
Functional Regression Analysis
}
\description{
Function \code{fRegress} carries out a functional regression analysis
of the concurrent kind, and estimates a regression coefficient
function corresponding to each independent variable, whether it is
scalar or functional. This function uses the list that is output by
\code{fRegress} to provide standard error functions for each
regression function. These standard error functions are pointwise,
meaning that sampling standard deviation functions only are computed,
and not sampling covariances.
}
\usage{
\method{fRegress}{stderr}(y, y2cMap, SigmaE, returnMatrix=FALSE, ...)
}
\arguments{
\item{y}{
the named list that is returned from a call to function
\code{fRegress}, where it is referred to as fRegressList. (R syntax
requires that the first argument of any function beginning with
\code{fRegress.} must begin with \code{y}.)
}
\item{y2cMap}{
a matrix that contains the linear transformation that takes the raw
data values into the coefficients defining a smooth functional data
object. Typically, this matrix is returned from a call to function
\code{smooth.basis} that generates the dependent variable objects.
If the dependent variable is scalar, this matrix is an identity
matrix of order equal to the length of the vector.
}
\item{SigmaE}{
either a matrix or a bivariate functional data object according to
whether the dependent variable is scalar or functional,
respectively. This object has a number of replications equal to the
length of the dependent variable object. It contains an estimate of
the variance-covariance matrix or function for the residuals.
}
\item{returnMatrix}{
logical: If TRUE, a two-dimensional is returned using a
special class from the Matrix package.
}
\item{\dots}{
optional arguments not used by \code{fRegress.stderr} but needed for
superficial compatibility with \code{fRegress} methods.
}
}
\value{
a named list of length 3 containing:
\item{betastderrlist}{a list object of length the number of independent
variables. Each member contains a functional parameter object for the
standard error of a regression function.}
\item{bvar}{a symmetric matrix containing sampling variances and covariances
for the matrix of regression coefficients for the regression functions.
These are stored column-wise in defining BVARIANCE.}
\item{c2bMap}{a matrix containing the mapping from response variable
coefficients to coefficients for regression coefficients.}
}
\references{
Ramsay, James O., Hooker, Giles, and Graves, Spencer (2009),
\emph{Functional data analysis with R and Matlab}, Springer, New York.
Ramsay, James O., and Silverman, Bernard W. (2005),
\emph{Functional Data Analysis, 2nd ed.}, Springer, New York.
Ramsay, James O., and Silverman, Bernard W. (2002),
\emph{Applied Functional Data Analysis}, Springer, New York.
}
\seealso{
\code{\link{fRegress}},
\code{\link{fRegress.CV}}
}
\examples{
#See the weather data analyses in the file daily.ssc for
#examples of the use of function fRegress.stderr.
}
% docclass is function
\keyword{smooth}