-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathfdPar.Rd
166 lines (155 loc) · 5.09 KB
/
fdPar.Rd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
\name{fdPar}
\alias{fdPar}
\title{
Define a Functional Parameter Object
}
\description{
Functional parameter objects are used as arguments to functions that
estimate functional parameters, such as smoothing functions like
\code{smooth.basis}. A functional parameter object is a functional
data object with additional slots specifying a roughness penalty, a
smoothing parameter and whether or not the functional parameter is to
be estimated or held fixed. Functional parameter objects are used as
arguments to functions that estimate functional parameters.
}
\usage{
fdPar(fdobj=NULL, Lfdobj=NULL, lambda=0, estimate=TRUE, penmat=NULL)
}
\arguments{
\item{fdobj}{
a functional data object, functional basis object, a functional
parameter object or a matrix. If it a matrix, it is replaced by
fd(fdobj). If class(fdobj) == 'basisfd', it is converted to an
object of class \code{fd} with a coefficient matrix consisting of a
single column of zeros.
}
\item{Lfdobj}{
either a nonnegative integer or a linear differential operator
object.
If \code{NULL}, Lfdobj depends on fdobj[['basis']][['type']]:
\describe{
\item{bspline}{Lfdobj <- int2Lfd(max(0, norder-2)),
where norder = norder(fdobj).}
\item{fourier}{Lfdobj = a harmonic acceleration operator:
\code{Lfdobj <- vec2Lfd(c(0,(2*pi/diff(rng))^2,0), rng)}
where rng = fdobj[['basis']][['rangeval']].}
\item{anything else}{Lfdobj <- int2Lfd(0)}
}
}
\item{lambda}{
a nonnegative real number specifying the amount of smoothing
to be applied to the estimated functional parameter.
}
\item{estimate}{not currently used.}
\item{penmat}{
a roughness penalty matrix. Including this can eliminate the need
to compute this matrix over and over again in some types of
calculations.
}
}
\details{
Functional parameters are often needed to specify initial
values for iteratively refined estimates, as is the case in
functions \code{register.fd} and \code{smooth.monotone}.
Often a list of functional parameters must be supplied to a function
as an argument, and it may be that some of these parameters are
considered known and must remain fixed during the analysis. This is
the case for functions \code{fRegress} and \code{pda.fd}, for
example.
}
\value{
a functional parameter object (i.e., an object of class \code{fdPar}),
which is a list with the following components:
\item{fd}{
a functional data object (i.e., with class \code{fd})
}
\item{Lfd}{
a linear differential operator object (i.e., with class
\code{Lfd})
}
\item{lambda}{
a nonnegative real number
}
\item{estimate}{not currently used}
\item{penmat}{
either NULL or a square, symmetric matrix with penmat[i, j] =
integral over fd[['basis']][['rangeval']] of basis[i]*basis[j]
}
}
\source{
Ramsay, James O., and Silverman, Bernard W. (2006), \emph{Functional
Data Analysis, 2nd ed.}, Springer, New York.
Ramsay, James O., and Silverman, Bernard W. (2002), \emph{Applied
Functional Data Analysis}, Springer, New York
}
\seealso{
\code{\link{cca.fd}},
\code{\link{density.fd}},
\code{\link{fRegress}},
\code{\link{intensity.fd}},
\code{\link{pca.fd}},
\code{\link{smooth.fdPar}},
\code{\link{smooth.basis}},
\code{\link{smooth.monotone}},
\code{\link{int2Lfd}}
}
\examples{
oldpar <- par(no.readonly=TRUE)
##
## Simple example
##
# set up range for density
rangeval <- c(-3,3)
# set up some standard normal data
x <- rnorm(50)
# make sure values within the range
x[x < -3] <- -2.99
x[x > 3] <- 2.99
# set up basis for W(x)
basisobj <- create.bspline.basis(rangeval, 11)
# set up initial value for Wfdobj
Wfd0 <- fd(matrix(0,11,1), basisobj)
WfdParobj <- fdPar(Wfd0)
WfdP3 <- fdPar(seq(-3, 3, length=11))
##
## smooth the Canadian daily temperature data
##
# set up the fourier basis
nbasis <- 365
dayrange <- c(0,365)
daybasis <- create.fourier.basis(dayrange, nbasis)
dayperiod <- 365
harmaccelLfd <- vec2Lfd(c(0,(2*pi/365)^2,0), dayrange)
# Make temperature fd object
# Temperature data are in 12 by 365 matrix tempav
# See analyses of weather data.
# Set up sampling points at mid days
daytime <- (1:365)-0.5
# Convert the data to a functional data object
daybasis65 <- create.fourier.basis(dayrange, nbasis, dayperiod)
templambda <- 1e1
tempfdPar <- fdPar(fdobj=daybasis65, Lfdobj=harmaccelLfd,
lambda=templambda)
#FIXME
#tempfd <- smooth.basis(CanadianWeather$tempav, daytime, tempfdPar)$fd
# Set up the harmonic acceleration operator
Lbasis <- create.constant.basis(dayrange);
Lcoef <- matrix(c(0,(2*pi/365)^2,0),1,3)
bfdobj <- fd(Lcoef,Lbasis)
bwtlist <- fd2list(bfdobj)
harmaccelLfd <- Lfd(3, bwtlist)
# Define the functional parameter object for
# smoothing the temperature data
lambda <- 0.01 # minimum GCV estimate
#tempPar <- fdPar(daybasis365, harmaccelLfd, lambda)
# smooth the data
#tempfd <- smooth.basis(daytime, CanadialWeather$tempav, tempPar)$fd
# plot the temperature curves
#plot(tempfd)
##
## with rangeval of class Date and POSIXct
##
par(oldpar)
}
% docclass is function
\keyword{smooth}