-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathlambda2df.Rd
54 lines (52 loc) · 1.61 KB
/
lambda2df.Rd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
\name{lambda2df}
\alias{lambda2df}
\title{
Convert Smoothing Parameter to Degrees of Freedom
}
\description{
The degree of roughness of an estimated function is controlled by a
smoothing parameter $lambda$ that directly multiplies the penalty.
However, it can be difficult to interpret or choose this value, and it
is often easier to determine the roughness by choosing a value that is
equivalent of the degrees of freedom used by the smoothing procedure.
This function converts a multipler $lambda$ into a degrees of freedom value.
}
\usage{
lambda2df(argvals, basisobj, wtvec=rep(1, n), Lfdobj=NULL, lambda=0)
}
\arguments{
\item{argvals}{
a vector containing the argument values used in the
smooth of the data.
}
\item{basisobj}{
the basis object used in the smoothing of the data.
}
\item{wtvec}{
the weight vector, if any, that was used in the smoothing
of the data.
}
\item{Lfdobj}{
the linear differential operator object used to defining
the roughness penalty employed in smoothing the data.
}
\item{lambda}{
the smoothing parameter to be converted.
}
}
\value{
the equivalent degrees of freedom value.
}
\references{
Ramsay, James O., Hooker, Giles, and Graves, Spencer (2009),
\emph{Functional data analysis with R and Matlab}, Springer, New York.
Ramsay, James O., and Silverman, Bernard W. (2005),
\emph{Functional Data Analysis, 2nd ed.}, Springer, New York.
Ramsay, James O., and Silverman, Bernard W. (2002),
\emph{Applied Functional Data Analysis}, Springer, New York.
}
\seealso{
\code{\link{df2lambda}}
}
% docclass is function
\keyword{smooth}