@@ -217,84 +217,80 @@ fRegress(y, ...)
217
217
These functions provide a partial implementation of Ramsay and
218
218
Silverman (2005 , chapters 12 - 20 ).
219
219
}
220
+
220
221
\value {
221
222
These functions return either a standard \code {fRegress } fit object or
222
223
or a model specification :
223
- \item {The \code {fRegress } fit object case : }{A list of class \code {fRegress } with the following components :
224
+ \describe {
225
+ \item {The \code {fRegress } fit object case : }{A list of class
226
+ \code {fRegress } with the following components :
224
227
\itemize {
225
- \item {y : } {
226
- The first argument in the call to \code {fRegress } . This argument is coerced to
227
- \ code { class } \ code { fd } in fda version 5.1.9 . Prior versions of the
228
- package converted it to an \ code { fdPar }, but the extra structures in that
229
- class were not used in any of the \code {fRegress } codes. }
228
+ \item {y : } {The first argument in the call to \ code { fRegress } .
229
+ This argument is coerced to \ code { class } \code {fd } in fda version 5.1.9 .
230
+ Prior versions of the package converted it to an \ code { fdPar }, but the
231
+ extra structures in that class were not used in any of the
232
+ \code {fRegress } codes. }
230
233
\item {xfdlist : } {The second argument in the call to \code {fRegress }. }
231
234
\item {betalist : } {The third argument in the call to \code {fRegress }. }
232
- \item {betaestlist : } {A list of length equal to the number of independent variables
233
- and with members having the same functional parameter structure
234
- as the corresponding members of \code {betalist }. These are the
235
- estimated regression coefficient functions. }
236
- \item {yhatfdobj : } {A functional parameter object (class \code {fdPar }) if the
237
- dependent variable is functional or a vector if the dependent
238
- variable is scalar. This is the set of predicted by the
239
- functional regression model for the dependent variable. }
240
- \item {Cmatinv : } {A matrix containing the inverse of the coefficient matrix for
241
- the linear equations that define the solution to the regression
242
- problem. This matrix is required for function
243
- \code {fRegress.stderr } that estimates confidence regions
244
- for the regression coefficient function estimates. }
235
+ \item {betaestlist : } {A list of length equal to the number of independent
236
+ variables and with members having the same functional parameter
237
+ structure as the corresponding members of \code {betalist }. These are the
238
+ estimated regression coefficient functions. }
239
+ \item {yhatfdobj : } {A functional parameter object (class \code {fdPar })
240
+ if the dependent variable is functional or a vector if the dependent
241
+ variable is scalar. This is the set of predicted by the
242
+ functional regression model for the dependent variable. }
243
+ \item {Cmatinv : } {A matrix containing the inverse of the coefficient
244
+ matrix for the linear equations that define the solution to the
245
+ regression problem. This matrix is required for function
246
+ \code {fRegress.stderr } that estimates confidence regions
247
+ for the regression coefficient function estimates. }
245
248
\item {wt : } {The vector of weights input or inferred. }
246
-
247
- If \code {class(y )} is numeric , the \code {fRegress } object also includes :
248
-
249
+ }
250
+ If \code {class(y )} is numeric , the \code {fRegress } object also includes :
251
+ \ itemize {
249
252
\item {df : } {The equivalent degrees of freedom for the fit. }
250
- \item {OCV }{
251
- the leave - one - out cross validation score for the model.
252
- }
253
+ \item {OCV } {the leave - one - out cross validation score for the model. }
253
254
\item {gcv : } {The generalized cross validation score. }
254
-
255
-
256
- If \code {class(y )} is \code {fd } or \code {fdPar }, the
257
- \code {fRegress } object returned also includes 5 other components :
258
-
255
+ }
256
+ If \code {class(y )} is \code {fd } or \code {fdPar }, the
257
+ code {fRegress } object returned also includes 5 other components :
258
+ \itemize {
259
259
\item {y2cMap : } {An input \code {y2cMap }. }
260
260
\item {SigmaE : } {An input \code {SigmaE }. }
261
- \item {betastderrlist : } {An \code {fd } object estimating the standard errors of
262
- \code {betaestlist }. }
261
+ \item {betastderrlist : } {An \code {fd } object estimating the standard
262
+ errors of \code {betaestlist }. }
263
263
\item {bvar : } {A covariance matrix for regression coefficient estimates. }
264
- \item {c2bMap : } {A mapping matrix that maps variation in Cmat to variation in
265
- regression coefficients. }
264
+ \item {c2bMap : } {A mapping matrix that maps variation in Cmat to variation
265
+ in regression coefficients. }
266
266
}
267
- }
268
- \item {The model specification object case : }{The \code {fRegress.formula } and
269
- \code {fRegress.character }
270
- functions translate the \code {formula } into the argument list
271
- required by \code {fRegress.fdPar } or \code {fRegress.numeric }.
272
- With the default value ' fRegress' for the argument \code {method },
273
- this list is then used to call the appropriate other
274
- \code {fRegress } function .
275
-
276
- Alternatively , to see how the \code {formula } is translated , use
277
- the alternative ' model' value for the argument \code {method }. In
278
- that case , the function returns a list with the arguments
279
- otherwise passed to these other functions plus the following
280
- additional components :
281
-
282
- \itemize {
283
- \item {xfdlist0 : } {A list of the objects named on the right hand side of
284
- \code {formula }. This will differ from \code {xfdlist } for
285
- any categorical or multivariate right hand side object. }
286
- \item {type : } {
287
- the \code {type } component of any \code {fd } object on the right
288
- hand side of \code {formula }. }
289
- \item {nbasis : } {A vector containing the \code {nbasis } components of variables
290
- named in \code {formula } having such components. }
291
- \item {xVars : } {An integer vector with all the variable names on the right
292
- hand side of \code {formula } containing the corresponding
293
- number of variables in \code {xfdlist }. This can exceed 1 for
294
- any multivariate object on the right hand side of class either
295
- \code {numeric } or \code {fd } as well as any categorical
296
- variable. }
297
267
}
268
+
269
+ \item {The model specification object case : }{The
270
+ \code {fRegress.formula } and \code {fRegress.character } functions translate
271
+ the \code {formula } into the argument list required by \code {fRegress.fdPar }
272
+ or \code {fRegress.numeric }. With the default value ' fRegress' for the
273
+ argument \code {method }, this list is then used to call the appropriate
274
+ other \code {fRegress } function . }
275
+ }
276
+ Alternatively , to see how the \code {formula } is translated , use
277
+ the alternative ' model' value for the argument \code {method }. In
278
+ that case , the function returns a list with the arguments
279
+ otherwise passed to these other functions plus the following
280
+ additional components :
281
+ \itemize {
282
+ \item {xfdlist0 : } {A list of the objects named on the right hand side of
283
+ \code {formula }. This will differ from \code {xfdlist } for
284
+ any categorical or multivariate right hand side object. }
285
+ \item {type : } {the \code {type } component of any \code {fd } object on the
286
+ right hand side of \code {formula }. }
287
+ \item {nbasis : } {A vector containing the \code {nbasis } components of
288
+ variables named in \code {formula } having such components. }
289
+ \item {xVars : } {An integer vector with all the variable names on the right
290
+ hand side of \code {formula } containing the corresponding
291
+ number of variables in \code {xfdlist }. This can exceed 1 for
292
+ any multivariate object on the right hand side of class either
293
+ \code {numeric } or \code {fd } as well as any categorical variable. }
298
294
}
299
295
}
300
296
\author {
0 commit comments