Skip to content

Latest commit

 

History

History
76 lines (60 loc) · 5.84 KB

line_sona.md

File metadata and controls

76 lines (60 loc) · 5.84 KB

LINE

LINE(Large-scale Information Network Embedding)算法,是Network Embedding领域著名的算法之一,将图数据嵌入到向量空间,从达到用针对向量类型数据的机器学习算法来处理图数据的目的

1. 算法介绍

LINE算法是一个网络表示学习算法,也可以认为是针对图数据的预处理算法。算法的输入是一个网络拓扑,输出每个节点的向量表示。LINE算法本身在于分别优化两个目标函数:

其中,刻画了节点之间的一阶相似性(直接连边),刻画了节点之间的二阶相似性(相似邻居)。换句话说,

  • 如果两个节点之间有连边,那么在嵌入的向量空间中两个节点也要靠近
  • 如果两个节点的邻居是相似的,那么在嵌入的向量空间中,两个节点也要靠近

更详细的细节请参考论文[1]

2. 运行

算法IO参数

  • input: hdfs路径,无向图,节点需要从0开始连续编号,以空白符或者逗号分隔,比如: 0 2 2 1 3 1 3 2 4 1
  • output: hdfs路径, 最终的模型保存路径为 modelPath/CP_x,其中x代表第x轮epoch
  • saveModelInterval:每隔多少个epoch保存一次模型
  • checkpointInterval:每隔多少个epoch写一次checkpoint

算法参数

  • embedding: 嵌入的向量空间维度,即为embedding向量和context的向量维度(意味着同样的参数下,二阶优化占用的模型空间为一阶优化的两倍)
  • negative: 算法采样的是负采样优化,表示每个pair使用的负采样节点数
  • epoch:总的迭代轮数
  • stepSize: 学习率很影响该算法的结果,太高很容易引起模型跑飞的问题,如果发现结果量级太大,请降低该参数
  • batchSize: 每个mini batch的大小,一般选择1000~10000
  • psPartitionNum:模型分区个数,最好是parameter server个数的整数倍,让每个ps承载的分区数量相等,让每个PS负载尽量均衡, 数据量大的话推荐500以上
  • dataPartitionNum:输入数据的partition数,一般设为spark executor个数乘以executor core数的3-4倍
  • remapping:是否需要对节点进行重新编码,取值true或者false(LINE目前只能支持节点ID属于一个连续的整数空间,最好在运行LINE之前做好ID的映射。如果设置为true,首先会做一次ID的映射并输出一个映射文件)
  • order:使用的是一阶相似度还是二阶相似度(1或者2), 默认为2
  • sep:数据列分隔符(space、comma和tab可选), 默认为space

资源参数

  • Angel PS个数和内存大小:ps.instance与ps.memory的乘积是ps总的配置内存。为了保证Angel不挂掉,需要配置模型大小两倍左右的内存。对于LINE来说,模型大小的计算公式为: 节点数 * Embedding特征的维度 * order * 4 Byte,比如说1kw节点、100维、2阶的配置下,模型大小差不多有60G大小,那么配置instances=4, memory=30就差不多了。 另外,在可能的情况下,ps数目越小,数据传输的量会越小,但是单个ps的压力会越大,需要一定的权衡。
  • Spark的资源配置:num-executors与executor-memory的乘积是executors总的配置内存,最好能存下2倍的输入数据。 如果内存紧张,1倍也是可以接受的,但是相对会慢一点。 比如说100亿的边集大概有600G大小, 50G * 20 的配置是足够的。 在资源实在紧张的情况下, 尝试加大分区数目!

任务提交示例

进入angel环境bin目录下

input=hdfs://my-hdfs/data
output=hdfs://my-hdfs/model

source ./spark-on-angel-env.sh
$SPARK_HOME/bin/spark-submit \
  --master yarn-cluster\
  --conf spark.ps.instances=1 \
  --conf spark.ps.cores=1 \
  --conf spark.ps.jars=$SONA_ANGEL_JARS \
  --conf spark.ps.memory=10g \
  --jars $SONA_SPARK_JARS  \
  --driver-memory 5g \
  --num-executors 1 \
  --executor-cores 4 \
  --executor-memory 10g \
  --class com.tencent.angel.spark.examples.cluster.LINEExample \
  ../lib/spark-on-angel-examples-3.1.0.jar \
  input:$input output:$output embedding:128 negative:5 epoch:10 stepSize:0.01 batchSize:1000 psPartitionNum:10 remapping:false order:2

常见问题

  • 在差不多10min的时候,任务挂掉: 很可能的原因是angel申请不到资源!由于LINE基于Spark On Angel开发,实际上涉及到Spark和Angel两个系统,它们的向Yarn申请资源是独立进行的。 在Spark任务拉起之后,由Spark向Yarn提交Angel的任务,如果不能在给定时间内申请到资源,就会报超时错误,任务挂掉! 解决方案是: 1)确认资源池有足够的资源 2) 添加spakr conf: spark.hadoop.angel.am.appstate.timeout.ms=xxx 调大超时时间,默认值为600000,也就是10分钟
  • 如何估算我需要配置多少Angel资源: 为了保证Angel不挂掉,需要配置模型大小两倍左右的内存。 模型大小的计算公式为: 节点数 * Embedding特征的维度 * order * 4 Byte,比如说1kw节点、100维、2阶的配置下,模型大小差不多有60G大小,那么配置instances=4, memory=30就差不多了。 另外,在可能的情况下,ps数目越小,数据传输的量会越小,但是单个ps的压力会越大,需要一定的权衡。
  • Spark的资源配置: 同样主要考虑内存问题,最好能存下2倍的输入数据。 如果内存紧张,1倍也是可以接受的,但是相对会慢一点。 比如说100亿的边集大概有600G大小, 50G * 20 的配置是足够的。 在资源实在紧张的情况下, 尝试加大分区数目!