Skip to content

Latest commit

 

History

History
335 lines (279 loc) · 23.5 KB

HSSUSY.rst

File metadata and controls

335 lines (279 loc) · 23.5 KB

HSSUSY

Table of Contents

HSSUSY

HSSUSY (high scale supersymmetry) is an implementation of the Standard Model, matched to the MSSM at the SUSY scale, MSUSY. The setup of HSSUSY is shown in the following figure.

image

Boundary conditions

High scale

In HSSUSY, the HighScale variable is set to the SUSY scale, MSUSY. At this scale the quartic Higgs coupling, λ(MSUSY), is predicted from the matching to the MSSM using the full 1-loop and dominant 2- and 3-loop threshold corrections of O((αt + αb)αs + (αt + αb)2 + αbατ + ατ2 + αtαs2) from [1407.4081], [1504.05200], [1703.08166], [1807.03509].

The 3- and partial 4- and 5-loop renormalization group equations of [1303.4364], [1307.3536], [1508.00912], [1508.02680], [1604.00853], [1606.08659] are used to run λ(MSUSY) down to the electroweak scale MZ or MEWSB.

If MSUSY is set to zero, $M_{\text{SUSY}} = \sqrt{m_{\tilde{t}_1}m_{\tilde{t}_2}}$ is used.

Low scale

The LowScale is set to MZ. At this scale, the $\overline{\text{MS}}$ gauge and Yukawa couplings g1, 2, 3(MZ), Yu, d, e(MZ), as well as the SM vacuum expectation value (VEV), v(MZ), are calculated at the full 1-loop level from the known low-energy couplings αemSM(5)(MZ), αsSM(5)(MZ), from the pole masses MZ, Me, Mμ, Mτ, Mt as well as from the $\overline{\text{MS}}$ masses mbSM(5)(mb), mcSM(4)(mc), ms(2 GeV), md(2 GeV), mu(2 GeV). In addition to these 1-loop corrections, known 2-, 3- and 4-loop corrections are taken into account, see the following table.

Coupling Corrections

αem

1-loop full

sin (θW)

1-loop full

αs

1-loop full

2-loop O(αs2) [hep-ph:9305305] [hep-ph:9707474]

3-loop O(αs3) [hep-ph:9708255]

4-loop O(αs4) [hep-ph:0512060]

mt

1-loop full

2-loop O((αs + αt)2) [hep-ph:9803493] [1604.01134]

3-loop O(αs3) [hep-ph:9911434] [hep-ph:9912391]

4-loop O(αs4) [1604.01134]

mb

1-loop full

mτ

1-loop full

v

1-loop full

See the documentation of the SLHA input parameters for a description of the individual flags to enable/disable higher-order threshold corrections in FlexibleSUSY.

EWSB scale

The Higgs and W boson pole masses, Mh and MW are calculated at the scale MEWSB, which is an input parameter. We recommend to set MEWSB = Mt.

Furthermore, the electroweak symmetry breaking condition is imposed at the scale MEWSB to fix the value of the bililear Higgs coupling μ2(MEWSB).

Pole masses

The Higgs and W boson pole masses, Mh and MW, are calculated at the full 1-loop level in the Standard Model, including potential flavour mixing and momentum dependence. Depending on the given configuration flags, additional 2-, 3- and 4-loop corrections to the Higgs pole mass of O(αtαs + αbαs) [1407.4336] O((αt + αb)2) [1205.6497] and O(ατ2), as well as 3-loop corrections O(αt3 + αt2αs + αtαs2) [1407.4336] and 4-loop corrections O(αtαs3) [1508.00912] can be taken into account.

Input parameters

HSSUSY takes the following physics parameters as input:

Parameter Description SLHA block/field Mathematica symbol
MSUSY

SUSY scale

EXTPAR[0]

MSUSY

M1(MSUSY)

Bino mass

EXTPAR[1]

M1Input

M2(MSUSY)

Wino mass

EXTPAR[2]

M2Input

M3(MSUSY)

Gluino mass

EXTPAR[3]

M3Input

μ(MSUSY)

μ-parameter

EXTPAR[4]

MuInput

mA(MSUSY)

running CP-odd Higgs mass

EXTPAR[5]

mAInput

MEWSB

scale at which the pole mass spectrum is calculated

EXTPAR[6]

MEWSB

At(MSUSY)

trililear stop coupling

EXTPAR[7]

AtInput

Ab(MSUSY)

trililear sbottom coupling

EXTPAR[8]

AbInput

Aτ(MSUSY)

trililear stau coupling

EXTPAR[9]

AtauInput

tan β(MSUSY)

tan β(MSUSY) = vu(MSUSY)/vd(MSUSY)

EXTPAR[25]

TanBeta

(m2)ij(MSUSY)

soft-breaking left-handed squark mass parameters

MSQ2IN

msq2

(m2)ij(MSUSY)

soft-breaking right-handed up-type squark mass parameters

MSU2IN

msu2

(m2)ij(MSUSY)

soft-breaking right-handed down-type squark mass parameters

MSD2IN

msd2

(m2)ij(MSUSY)

soft-breaking left-handed slepton mass parameters

MSL2IN

msl2

(m2)ij(MSUSY)

soft-breaking right-handed down-type slepton mass parameters

MSE2IN

mse2

The MSSM parameters are defined in the $\overline{\text{DR}}$ scheme at the scale MSUSY.

In addition, HSSUSY defines further input parameters / flags to enable/disable higher order threshold corrections to the quartic Higgs coupling λ(MSUSY) and to estimate the EFT and SUSY uncertainty:

Parameter Description Possible values Recommended value SLHA block/field Mathematica symbol

n

loop order for λ(n)(MSUSY)

0, 1, 2

3

EXTPAR[100]

LambdaLoopOrder

Δαtαs

disable/enable 2-loop corrections to λ(MSUSY) O(αtαs)

0, 1

1

EXTPAR[101]

TwoLoopAtAs

Δαbαs

disable/enable 2-loop corrections to λ(MSUSY) O(αbαs)

0, 1

1

EXTPAR[102]

TwoLoopAbAs

Δαtαb

disable/enable 2-loop corrections to λ(MSUSY) O(αtαb)

0, 1

1

EXTPAR[103]

TwoLoopAtAb

Δατατ

disable/enable 2-loop corrections to λ(MSUSY) O(ατ2)

0, 1

1

EXTPAR[104]

TwoLoopAtauAtau

Δαtαt

disable/enable 2-loop corrections to λ(MSUSY) O(αt2)

0, 1

1

EXTPAR[105]

TwoLoopAtAt

ΔEFT

disable/enable corrections to λ(MSUSY) O(v2/MSUSY2)

0, 1

0

EXTPAR[200]

DeltaEFT

Δyt, g3

disable/enable 3-loop corrections from re-parametrization of λ(MSUSY) in terms of ytMSSM, g3MSSM

0, 1

0

EXTPAR[201]

DeltaYt

ΔOS

disable/enable conversion of stop masses to on-shell scheme

0, 1

0 (= $\overline{\text{DR}}$)

EXTPAR[202]

DeltaOS

Qmatch

scale at which λ(Qmatch) is calculated

any real value

0 (= MSUSY)

EXTPAR[203]

Qmatch

δ(Δλ3L)

add uncertainty δ(Δλ3L) to Δλ3L from Himalaya

-1, 0, 1

0 (= uncertainty not added)

EXTPAR[204]

DeltaLambda3L

Δαtαs2

disable/enable 3-loop corrections to λ(MSUSY) O(αtαs2) from Himalaya

0, 1

1

EXTPAR[205]

ThreeLoopAtAsAs

Running HSSUSY

We recommend to run HSSUSY with the following configuration flags: In an SLHA input file we recommend to use:

Block FlexibleSUSY
    0   1.0e-05      # precision goal
    1   0            # max. iterations (0 = automatic)
    2   0            # algorithm (0 = all, 1 = two_scale, 2 = semi_analytic)
    3   1            # calculate SM pole masses
    4   4            # pole mass loop order
    5   4            # EWSB loop order
    6   4            # beta-functions loop order
    7   4            # threshold corrections loop order
    8   1            # Higgs 2-loop corrections O(alpha_t alpha_s)
    9   1            # Higgs 2-loop corrections O(alpha_b alpha_s)
   10   1            # Higgs 2-loop corrections O((alpha_t + alpha_b)^2)
   11   1            # Higgs 2-loop corrections O(alpha_tau^2)
   12   0            # force output
   13   3            # Top pole mass QCD corrections (0 = 1L, 1 = 2L, 2 = 3L)
   14   1.0e-11      # beta-function zero threshold
   15   0            # calculate all observables
   16   0            # force positive majorana masses
   17   0            # pole mass renormalization scale (0 = SUSY scale)
   18   0            # pole mass renormalization scale in the EFT (0 = min(SUSY scale, Mt))
   19   0            # EFT matching scale (0 = SUSY scale)
   20   2            # EFT loop order for upwards matching
   21   1            # EFT loop order for downwards matching
   22   0            # EFT index of SM-like Higgs in the BSM model
   23   1            # calculate BSM pole masses
   24   124111421    # individual threshold correction loop orders
   25   0            # ren. scheme for Higgs 3L corrections (0 = DR, 1 = MDR)
   26   1            # Higgs 3-loop corrections O(alpha_t alpha_s^2)
   27   1            # Higgs 3-loop corrections O(alpha_b alpha_s^2)
   28   1            # Higgs 3-loop corrections O(alpha_t^2 alpha_s)
   29   1            # Higgs 3-loop corrections O(alpha_t^3)
   30   1            # Higgs 4-loop corrections O(alpha_t alpha_s^3)

In the Mathematica interface we recommend to use:

handle = FSHSSUSYOpenHandle[
    fsSettings -> {
        precisionGoal -> 1.*^-5,           (* FlexibleSUSY[0] *)
        maxIterations -> 0,                (* FlexibleSUSY[1] *)
        solver -> 0,                       (* FlexibleSUSY[2] *)
        calculateStandardModelMasses -> 1, (* FlexibleSUSY[3] *)
        poleMassLoopOrder -> 4,            (* FlexibleSUSY[4] *)
        ewsbLoopOrder -> 4,                (* FlexibleSUSY[5] *)
        betaFunctionLoopOrder -> 4,        (* FlexibleSUSY[6] *)
        thresholdCorrectionsLoopOrder -> 4,(* FlexibleSUSY[7] *)
        higgs2loopCorrectionAtAs -> 1,     (* FlexibleSUSY[8] *)
        higgs2loopCorrectionAbAs -> 1,     (* FlexibleSUSY[9] *)
        higgs2loopCorrectionAtAt -> 1,     (* FlexibleSUSY[10] *)
        higgs2loopCorrectionAtauAtau -> 1, (* FlexibleSUSY[11] *)
        forceOutput -> 0,                  (* FlexibleSUSY[12] *)
        topPoleQCDCorrections -> 3,        (* FlexibleSUSY[13] *)
        betaZeroThreshold -> 1.*^-11,      (* FlexibleSUSY[14] *)
        forcePositiveMasses -> 0,          (* FlexibleSUSY[16] *)
        poleMassScale -> 0,                (* FlexibleSUSY[17] *)
        eftPoleMassScale -> 0,             (* FlexibleSUSY[18] *)
        eftMatchingScale -> 0,             (* FlexibleSUSY[19] *)
        eftMatchingLoopOrderUp -> 2,       (* FlexibleSUSY[20] *)
        eftMatchingLoopOrderDown -> 1,     (* FlexibleSUSY[21] *)
        eftHiggsIndex -> 0,                (* FlexibleSUSY[22] *)
        calculateBSMMasses -> 1,           (* FlexibleSUSY[23] *)
        thresholdCorrections -> 124111421, (* FlexibleSUSY[24] *)
        higgs3loopCorrectionRenScheme -> 0,(* FlexibleSUSY[25] *)
        higgs3loopCorrectionAtAsAs -> 1,   (* FlexibleSUSY[26] *)
        higgs3loopCorrectionAbAsAs -> 1,   (* FlexibleSUSY[27] *)
        higgs3loopCorrectionAtAtAs -> 1,   (* FlexibleSUSY[28] *)
        higgs3loopCorrectionAtAtAt -> 1,   (* FlexibleSUSY[29] *)
        higgs4loopCorrectionAtAsAsAs -> 1, (* FlexibleSUSY[30] *)
        parameterOutputScale -> 0          (* MODSEL[12] *)
    },
    ...
];

In the Section LibraryLink documentation an example Mathematica script can be found, which illustrates how to perform a parameter scan using the HSSUSY model.

Uncertainty estimate of the predicted Higgs pole mass

In the file model_files/HSSUSY/HSSUSY_uncertainty_estimate.m FlexibleSUSY provides the Mathematica function CalcHSSUSYDMh[], which calculates the Higgs pole mass at the 3-loop level with HSSUSY and performs an uncertainty estimate of missing higher order corrections. Three main sources of the theory uncertainty are taken into account:

  • SM uncertainty: Missing higher order corrections in the calculation of the running Standard Model top Yukawa coupling and in the calculation of the Higgs pole mass. The uncertainty from this source is estimated by (i) switching on/off the 3-loop QCD contributions in the calculation of the running top Yukawa coupling ytSM(MZ) from the top pole mass and by (ii) varying the renormalization scale at which the Higgs pole mass is calculated within the interval [MEWSB/2, 2MEWSB].
  • EFT uncertainty: Missing terms of O(v2/MSUSY2). These missing terms are estimated by adding 1-loop terms of the form v2/MSUSY2 to the quartic Higgs coupling λ(MSUSY).
  • SUSY uncertainty: Missing higher order corrections in the calculation of the quartic Higgs coupling λ(MSUSY). This uncertainty is estimated by (i) varying the matching scale within the interval [MSUSY/2, 2MSUSY] and by (ii) re-parametrization of λ(MSUSY) in terms of ytMSSM(MSUSY) and g3MSSM(MSUSY).

The following code snippet illustrates the calculation of the Higgs pole mass calculated at the 3-loop level with HSSUSY as a function of the SUSY scale (red solid line), together with the estimated uncertainty (grey band).


When this script is executed, the following figure is produced:

image

References

0707.0650

Int.J.Mod.Phys. A22 (2007) 5245-5277 [arXiv:0707.0650]

0810.5101

JHEP 0902 (2009) 037 [arXiv:0810.5101]

0901.2065

Phys.Rev. D84 (2011) 034030 [arXiv:0901.2065]

1009.5455

C10-06-06.1 [arXiv:1009.5455]

1205.6497

JHEP 1208 (2012) 098 [arXiv:1205.6497]

1303.4364

Nucl.Phys. B875 (2013) 552-565 [arXiv:1303.4364]

1307.3536

JHEP 1312 (2013) 089 [arXiv:1307.3536]

1407.4081

JHEP 1409 (2014) 092 [arXiv:1407.4081]

1407.4336

Phys.Rev. D90 (2014) no.7, 073010 [arXiv:1407.4336]

1504.05200

JHEP 1507 (2015) 159 [arXiv:1504.05200]

1508.00912

Phys.Rev. D92 (2015) no.5, 054029 [arXiv:1508.00912]

1508.02680

Phys.Lett. B762 (2016) 151-156 [arXiv:1508.02680]

1604.00853

JHEP 1606 (2016) 175 [arXiv:1604.00853]

1604.01134

Phys.Rev. D93 (2016) no.9, 094017 [arXiv:1604.01134]

1606.08659

Phys.Rev.Lett. 118 (2017) no.8, 082002 [arXiv:1606.08659]

1703.08166

Eur.Phys.J. C77 (2017) no.5, 334 [arXiv:1703.08166]

1807.03509

Eur.Phys.J. C78 (2018) no.10, 874 [arXiv:1807.03509]

hep-ph:0004189

Comput.Phys.Commun. 133 (2000) 43-65 [arXiv:hep-ph/0004189]

hep-ph:0105096

Nucl.Phys. B611 (2001) 403-422 [arXiv:hep-ph/0105096]

hep-ph:0210258

Eur.Phys.J. C29 (2003) 87-101 [arXiv:hep-ph/0210258]

hep-ph:0308231

Phys.Lett. B579 (2004) 180-188 [arXiv:hep-ph/0308231]

hep-ph:0507139

Phys.Atom.Nucl. 71 (2008) 343-350 [arXiv:hep-ph/0507139]

hep-ph:0509048

Phys.Rev. D72 (2005) 095009 [arXiv:hep-ph/0509048]

hep-ph:0512060

Nucl.Phys. B744 (2006) 121-135 [arXiv:hep-ph/0512060]

hep-ph:9305305

Phys.Lett. B313 (1993) 441-446 [arXiv:hep-ph/9305305]

hep-ph:9707474

Phys.Lett. B424 (1998) 367-374 [arXiv:hep-ph/9707474]

hep-ph:9708255

Nucl.Phys. B510 (1998) 61-87 [arXiv:hep-ph/9708255]

hep-ph:9803493

Nucl.Phys. B539 (1999) 671-690 [arXiv:hep-ph/9803493]

hep-ph:9911434

Nucl.Phys. B573 (2000) 617-651 [arXiv:hep-ph/9911434]

hep-ph:9912391

Phys.Lett. B482 (2000) 99-108 [arXiv:hep-ph/9912391]