Skip to content

Latest commit

 

History

History
55 lines (33 loc) · 4.19 KB

barotropicqgql.md

File metadata and controls

55 lines (33 loc) · 4.19 KB

BarotropicQGQL Module

Basic Equations

This module solves the quasi-linear quasi-geostrophic barotropic vorticity equation on a beta-plane of variable fluid depth $H-h(x,y)$. Quasi-linear refers to the dynamics that neglect the eddy--eddy interactions in the eddy evolution equation after an eddy--mean flow decomposition, e.g.,

$$\phi(x, y, t) = \overline{\phi}(y, t) + \phi'(x,y,t) ,$$

where overline above denotes a zonal mean, $\overline{\phi}(y, t) = \int \phi(x, y, t),\mathrm{d}x/L_x$, and prime denotes deviations from the zonal mean. This approximation is used in many process-model studies of zonation, e.g.,

As in the BarotropicQG module, the flow is obtained through a streamfunction $\psi$ as $(u, \upsilon) = (-\partial_y\psi, \partial_x\psi)$. All flow fields can be obtained from the quasi-geostrophic potential vorticity (QGPV). Here the QGPV is

$$\underbrace{f_0 + \beta y}{\text{planetary PV}} + \underbrace{(\partial_x \upsilon - \partial_y u)}{\text{relative vorticity}} + \underbrace{\frac{f_0 h}{H}}_{\text{topographic PV}}.$$

The dynamical variable is the component of the vorticity of the flow normal to the plane of motion, $\zeta\equiv \partial_x \upsilon- \partial_y u = \nabla^2\psi$. Also, we denote the topographic PV with $\eta\equiv f_0 h/H$. After we apply the eddy-mean flow decomposition above, the QGPV dynamics are:

$$\partial_t \overline{\zeta} + \mathsf{J}(\overline{\psi}, \underbrace{\overline{\zeta} + \overline{\eta}}{\equiv \overline{q}}) + \overline{\mathsf{J}(\psi', \underbrace{\zeta' + \eta'}{\equiv q'})} = \underbrace{-\left[\mu + \nu(-1)^{n_\nu} \nabla^{2n_\nu} \right] \overline{\zeta} }_{\textrm{dissipation}} \ .$$

$$\partial_t \zeta' + \mathsf{J}(\psi', \overline{q}) + \mathsf{J}(\overline{\psi}, q') + \underbrace{\mathsf{J}(\psi', q') - \overline{\mathsf{J}(\psi', q')}}{\textrm{EENL}} + \beta\partial_x\psi' = \underbrace{-\left[\mu + \nu(-1)^{n\nu} \nabla^{2n_\nu} \right] \zeta'}_{\textrm{dissipation}} + f\ .$$

where $\mathsf{J}(a, b) = (\partial_x a)(\partial_y b)-(\partial_y a)(\partial_x b)$. On the right hand side, $f(x,y,t)$ is forcing (which is assumed to have zero mean, $\overline{f}=0$), $\mu$ is linear drag, and $\nu$ is hyperviscosity. Plain old viscosity corresponds to $n_{\nu}=1$. The sum of relative vorticity and topographic PV is denoted with $q\equiv\zeta+\eta$.

Quasi-linear dynamics neglect the term eddy-eddy nonlinearity (EENL) term above.

Implementation

The equation is time-stepped forward in Fourier space:

$$\partial_t \widehat{\zeta} = - \widehat{\mathsf{J}(\psi, q)}^{\textrm{QL}} +\beta\frac{\mathrm{i}k_x}{k^2}\widehat{\zeta} -\left(\mu +\nu k^{2n_\nu}\right) \widehat{\zeta} + \widehat{f}\ .$$

In doing so the Jacobian is computed in the conservative form: $\mathsf{J}(f,g) = \partial_y [ (\partial_x f) g] -\partial_x[ (\partial_y f) g]$. The superscript QL in the Jacobian term above denotes that remove triad interactions that correspond to the EENL term.

Thus:

$$\mathcal{L} = \beta\frac{\mathrm{i}k_x}{k^2} - \mu - \nu k^{2n_\nu}\ ,$$ $$\mathcal{N}(\widehat{\zeta}) = - \mathrm{i}k_x \mathrm{FFT}(u q)^{\textrm{QL}}- \mathrm{i}k_y \mathrm{FFT}(\upsilon q)^{\textrm{QL}}\ .$$

Examples

  • examples/barotropicqgql_betaforced.jl: A script that simulates forced-dissipative quasi-linear quasi-geostrophic flow on a beta-plane demonstrating zonation. The forcing is temporally delta-correlated and its spatial structure is isotropic with power in a narrow annulus of total radius kf in wavenumber space. This example demonstrates that the anisotropic inverse energy cascade is not required for zonation.