Permalink
Find file
e2feac1 Jan 25, 2016
@pjreddie @Guanghan
440 lines (390 sloc) 14.1 KB
#include "network.h"
#include "detection_layer.h"
#include "cost_layer.h"
#include "utils.h"
#include "parser.h"
#include "box.h"
#ifdef OPENCV
#include "opencv2/highgui/highgui_c.h"
#endif
/* Change class number here */
#define CLASSNUM 2
/* Change class names here */
char *voc_names[] = {"stopsign", "yeildsign"};
image voc_labels[CLASSNUM];
void train_yolo(char *cfgfile, char *weightfile)
{
/* Change training folders here */
char *train_images = "BBoxLabelTool/train.txt";
/* Change output weight folders here */
char *backup_directory = "/u03/Guanghan/dev/darknet-master/backup/";
srand(time(0));
data_seed = time(0);
char *base = basecfg(cfgfile);
printf("%s\n", base);
float avg_loss = -1;
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
int imgs = net.batch*net.subdivisions;
int i = *net.seen/imgs;
printf("\n\n\n\n\n\n\nimgs = %d,\n i= %d\n", imgs, i);
data train, buffer;
layer l = net.layers[net.n - 1];
int side = l.side;
int classes = l.classes;
float jitter = l.jitter;
list *plist = get_paths(train_images);
//int N = plist->size;
char **paths = (char **)list_to_array(plist);
load_args args = {0};
args.w = net.w;
args.h = net.h;
args.paths = paths;
args.n = imgs;
args.m = plist->size;
args.classes = classes;
args.jitter = jitter;
args.num_boxes = side;
args.d = &buffer;
args.type = REGION_DATA;
pthread_t load_thread = load_data_in_thread(args);
clock_t time;
//while(i*imgs < N*120){
while(get_current_batch(net) < net.max_batches){
i += 1;
time=clock();
pthread_join(load_thread, 0);
train = buffer;
load_thread = load_data_in_thread(args);
printf("Loaded: %lf seconds\n", sec(clock()-time));
time=clock();
float loss = train_network(net, train);
if (avg_loss < 0) avg_loss = loss;
avg_loss = avg_loss*.9 + loss*.1;
printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs);
if(i%1000==0 || i == 600){
char buff[256];
sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
save_weights(net, buff);
}
free_data(train);
}
char buff[256];
sprintf(buff, "%s/%s_final.weights", backup_directory, base);
save_weights(net, buff);
}
void convert_yolo_detections(float *predictions, int classes, int num, int square, int side, int w, int h, float thresh, float **probs, box *boxes, int only_objectness)
{
int i,j,n;
//int per_cell = 5*num+classes;
for (i = 0; i < side*side; ++i){
int row = i / side;
int col = i % side;
for(n = 0; n < num; ++n){
int index = i*num + n;
int p_index = side*side*classes + i*num + n;
float scale = predictions[p_index];
int box_index = side*side*(classes + num) + (i*num + n)*4;
boxes[index].x = (predictions[box_index + 0] + col) / side * w;
boxes[index].y = (predictions[box_index + 1] + row) / side * h;
boxes[index].w = pow(predictions[box_index + 2], (square?2:1)) * w;
boxes[index].h = pow(predictions[box_index + 3], (square?2:1)) * h;
for(j = 0; j < classes; ++j){
int class_index = i*classes;
float prob = scale*predictions[class_index+j];
probs[index][j] = (prob > thresh) ? prob : 0;
}
if(only_objectness){
probs[index][0] = scale;
}
}
}
}
void print_yolo_detections(FILE **fps, char *id, box *boxes, float **probs, int total, int classes, int w, int h)
{
int i, j;
for(i = 0; i < total; ++i){
float xmin = boxes[i].x - boxes[i].w/2.;
float xmax = boxes[i].x + boxes[i].w/2.;
float ymin = boxes[i].y - boxes[i].h/2.;
float ymax = boxes[i].y + boxes[i].h/2.;
if (xmin < 0) xmin = 0;
if (ymin < 0) ymin = 0;
if (xmax > w) xmax = w;
if (ymax > h) ymax = h;
for(j = 0; j < classes; ++j){
if (probs[i][j]) fprintf(fps[j], "%s %f %f %f %f %f\n", id, probs[i][j],
xmin, ymin, xmax, ymax);
}
}
}
void validate_yolo(char *cfgfile, char *weightfile)
{
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
set_batch_network(&net, 1);
fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
srand(time(0));
char *base = "results/comp4_det_test_";
list *plist = get_paths("data/voc.2007.test");
//list *plist = get_paths("data/voc.2012.test");
char **paths = (char **)list_to_array(plist);
layer l = net.layers[net.n-1];
int classes = l.classes;
int square = l.sqrt;
int side = l.side;
int j;
FILE **fps = calloc(classes, sizeof(FILE *));
for(j = 0; j < classes; ++j){
char buff[1024];
snprintf(buff, 1024, "%s%s.txt", base, voc_names[j]);
fps[j] = fopen(buff, "w");
}
box *boxes = calloc(side*side*l.n, sizeof(box));
float **probs = calloc(side*side*l.n, sizeof(float *));
for(j = 0; j < side*side*l.n; ++j) probs[j] = calloc(classes, sizeof(float *));
int m = plist->size;
int i=0;
int t;
float thresh = .001;
int nms = 1;
float iou_thresh = .5;
int nthreads = 2;
image *val = calloc(nthreads, sizeof(image));
image *val_resized = calloc(nthreads, sizeof(image));
image *buf = calloc(nthreads, sizeof(image));
image *buf_resized = calloc(nthreads, sizeof(image));
pthread_t *thr = calloc(nthreads, sizeof(pthread_t));
load_args args = {0};
args.w = net.w;
args.h = net.h;
args.type = IMAGE_DATA;
for(t = 0; t < nthreads; ++t){
args.path = paths[i+t];
args.im = &buf[t];
args.resized = &buf_resized[t];
thr[t] = load_data_in_thread(args);
}
time_t start = time(0);
for(i = nthreads; i < m+nthreads; i += nthreads){
fprintf(stderr, "%d\n", i);
for(t = 0; t < nthreads && i+t-nthreads < m; ++t){
pthread_join(thr[t], 0);
val[t] = buf[t];
val_resized[t] = buf_resized[t];
}
for(t = 0; t < nthreads && i+t < m; ++t){
args.path = paths[i+t];
args.im = &buf[t];
args.resized = &buf_resized[t];
thr[t] = load_data_in_thread(args);
}
for(t = 0; t < nthreads && i+t-nthreads < m; ++t){
char *path = paths[i+t-nthreads];
char *id = basecfg(path);
float *X = val_resized[t].data;
float *predictions = network_predict(net, X);
int w = val[t].w;
int h = val[t].h;
convert_yolo_detections(predictions, classes, l.n, square, side, w, h, thresh, probs, boxes, 0);
if (nms) do_nms_sort(boxes, probs, side*side*l.n, classes, iou_thresh);
print_yolo_detections(fps, id, boxes, probs, side*side*l.n, classes, w, h);
free(id);
free_image(val[t]);
free_image(val_resized[t]);
}
}
fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start));
}
void validate_yolo_recall(char *cfgfile, char *weightfile)
{
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
set_batch_network(&net, 1);
fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
srand(time(0));
char *base = "results/comp4_det_test_";
list *plist = get_paths("data/voc.2007.test");
char **paths = (char **)list_to_array(plist);
layer l = net.layers[net.n-1];
int classes = l.classes;
int square = l.sqrt;
int side = l.side;
int j, k;
FILE **fps = calloc(classes, sizeof(FILE *));
for(j = 0; j < classes; ++j){
char buff[1024];
snprintf(buff, 1024, "%s%s.txt", base, voc_names[j]);
fps[j] = fopen(buff, "w");
}
box *boxes = calloc(side*side*l.n, sizeof(box));
float **probs = calloc(side*side*l.n, sizeof(float *));
for(j = 0; j < side*side*l.n; ++j) probs[j] = calloc(classes, sizeof(float *));
int m = plist->size;
int i=0;
float thresh = .001;
int nms = 0;
float iou_thresh = .5;
float nms_thresh = .5;
int total = 0;
int correct = 0;
int proposals = 0;
float avg_iou = 0;
for(i = 0; i < m; ++i){
char *path = paths[i];
image orig = load_image_color(path, 0, 0);
image sized = resize_image(orig, net.w, net.h);
char *id = basecfg(path);
float *predictions = network_predict(net, sized.data);
convert_yolo_detections(predictions, classes, l.n, square, side, 1, 1, thresh, probs, boxes, 1);
if (nms) do_nms(boxes, probs, side*side*l.n, 1, nms_thresh);
char *labelpath = find_replace(path, "images", "labels");
labelpath = find_replace(labelpath, "JPEGImages", "labels");
labelpath = find_replace(labelpath, ".jpg", ".txt");
labelpath = find_replace(labelpath, ".JPEG", ".txt");
int num_labels = 0;
box_label *truth = read_boxes(labelpath, &num_labels);
for(k = 0; k < side*side*l.n; ++k){
if(probs[k][0] > thresh){
++proposals;
}
}
for (j = 0; j < num_labels; ++j) {
++total;
box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h};
float best_iou = 0;
for(k = 0; k < side*side*l.n; ++k){
float iou = box_iou(boxes[k], t);
if(probs[k][0] > thresh && iou > best_iou){
best_iou = iou;
}
}
avg_iou += best_iou;
if(best_iou > iou_thresh){
++correct;
}
}
fprintf(stderr, "%5d %5d %5d\tRPs/Img: %.2f\tIOU: %.2f%%\tRecall:%.2f%%\n", i, correct, total, (float)proposals/(i+1), avg_iou*100/total, 100.*correct/total);
free(id);
free_image(orig);
free_image(sized);
}
}
void test_yolo(char *cfgfile, char *weightfile, char *filename, float thresh)
{
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
detection_layer l = net.layers[net.n-1];
set_batch_network(&net, 1);
srand(2222222);
clock_t time;
char buff[256];
char *input = buff;
int j;
float nms=.5;
box *boxes = calloc(l.side*l.side*l.n, sizeof(box));
float **probs = calloc(l.side*l.side*l.n, sizeof(float *));
for(j = 0; j < l.side*l.side*l.n; ++j) probs[j] = calloc(l.classes, sizeof(float *));
while(1){
if(filename){
strncpy(input, filename, 256);
} else {
printf("Enter Image Path: ");
fflush(stdout);
input = fgets(input, 256, stdin);
if(!input) return;
strtok(input, "\n");
}
image im = load_image_color(input,0,0);
image sized = resize_image(im, net.w, net.h);
float *X = sized.data;
time=clock();
float *predictions = network_predict(net, X);
printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
convert_yolo_detections(predictions, l.classes, l.n, l.sqrt, l.side, 1, 1, thresh, probs, boxes, 0);
if (nms) do_nms_sort(boxes, probs, l.side*l.side*l.n, l.classes, nms);
draw_detections(im, l.side*l.side*l.n, thresh, boxes, probs, voc_names, voc_labels, CLASSNUM);
show_image(im, "predictions");
show_image(sized, "resized");
free_image(im);
free_image(sized);
#ifdef OPENCV
cvWaitKey(0);
cvDestroyAllWindows();
#endif
if (filename) break;
}
}
/*
#ifdef OPENCV
image ipl_to_image(IplImage* src);
#include "opencv2/highgui/highgui_c.h"
#include "opencv2/imgproc/imgproc_c.h"
void demo_swag(char *cfgfile, char *weightfile, float thresh)
{
network net = parse_network_cfg(cfgfile);
if(weightfile){
load_weights(&net, weightfile);
}
detection_layer layer = net.layers[net.n-1];
CvCapture *capture = cvCaptureFromCAM(-1);
set_batch_network(&net, 1);
srand(2222222);
while(1){
IplImage* frame = cvQueryFrame(capture);
image im = ipl_to_image(frame);
cvReleaseImage(&frame);
rgbgr_image(im);
image sized = resize_image(im, net.w, net.h);
float *X = sized.data;
float *predictions = network_predict(net, X);
draw_swag(im, predictions, layer.side, layer.n, "predictions", thresh);
free_image(im);
free_image(sized);
cvWaitKey(10);
}
}
#else
void demo_swag(char *cfgfile, char *weightfile, float thresh){}
#endif
*/
void demo_yolo(char *cfgfile, char *weightfile, float thresh, int cam_index, char* filename);
#ifndef GPU
void demo_yolo(char *cfgfile, char *weightfile, float thresh, int cam_index, char* filename)
{
fprintf(stderr, "Darknet must be compiled with CUDA for YOLO demo.\n");
}
#endif
void run_yolo(int argc, char **argv)
{
int i;
for(i = 0; i < CLASSNUM; ++i){
char buff[256];
sprintf(buff, "data/labels/%s.png", voc_names[i]);
voc_labels[i] = load_image_color(buff, 0, 0);
}
float thresh = find_float_arg(argc, argv, "-thresh", .2);
int cam_index = find_int_arg(argc, argv, "-c", 0);
if(argc < 4){
fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
return;
}
char *cfg = argv[3];
char *weights = (argc > 4) ? argv[4] : 0;
char *filename = (argc > 5) ? argv[5]: 0;
if(0==strcmp(argv[2], "test")) test_yolo(cfg, weights, filename, thresh);
else if(0==strcmp(argv[2], "train")) train_yolo(cfg, weights);
else if(0==strcmp(argv[2], "valid")) validate_yolo(cfg, weights);
else if(0==strcmp(argv[2], "recall")) validate_yolo_recall(cfg, weights);
else if(0==strcmp(argv[2], "demo_cam")) demo_yolo(cfg, weights, thresh, cam_index, "NULL");
else if(0==strcmp(argv[2], "demo_vid")) demo_yolo(cfg, weights, thresh, -1, filename);
}