Skip to content

Commit

Permalink
working on uniformizing notation and terminology
Browse files Browse the repository at this point in the history
  • Loading branch information
mikeshulman committed Dec 19, 2012
1 parent aed8c00 commit 2595194
Show file tree
Hide file tree
Showing 2 changed files with 55 additions and 32 deletions.
71 changes: 44 additions & 27 deletions equivalences.tex
Expand Up @@ -2,33 +2,50 @@ \chapter{Equivalences}
\label{cha:equivalences}

\section{Equivalences and Homotopies}
\begin{defn}\label{defn:contractible} A type $A$ is {\em contractible} if there is $a:A$, called the {\em center of contraction} such that $a=x$ for all $x:A$.

\begin{defn}\label{defn:contractible}
A type $A$ is \textbf{contractible}, or a \textbf{singleton}, if there is $a:A$, called the \textbf{center of contraction}, such that $a=x$ for all $x:A$.
\end{defn}
\begin{defn}\label{defn:equivalence} A map $f:A\ra B$ is an {\em equivalence}
if, for $y:B$, its {\em fiber}, $\{x:A\mid fx = y\}$, is contractible.
We write $A\simeq B$ if there is an equivalence $A\ra B$.

\begin{defn}\label{defn:equivalence}
A map $f:A\ra B$ is an {\em equivalence} if, for $y:B$, its {\em fiber}, $\setof{x:A | fx = y}$, is contractible.
We write $A\eqv B$ for the type of equivalences $A\ra B$.
\end{defn}


\begin{lem}\label{lem:id-map} For each type $A$, the identity map
$1_A:= \lambda_{x:A}x :A\ra A$ is an equivalence.
\begin{lem}\label{lem:id-map}
For each type $A$, the identity map $\idfunc[A]\defeq \lambda_{x:A}x :A\ra A$ is an equivalence.
\end{lem}
\begin{proof} Let $a:A$ and let $\{ a\}_A:= \{ x:A\mid x=a\}$ be its fiber with respect to $1_A$. We show that $\{ a\}_A$ is contractible. Then, discharging $a:A$ we get that $\forall_{x:A}(\{ x\}_A$ is contractible); i.e. $1_A$ is an equivalence.

Let $\oa =(a,\refl{a}):\{ a\}_A$. As $(a,\refl{a}) = \oa$ we can use Id-induction \`{a} la Christine-Paulin to get
\[\forall_{x:A}\forall_{z:(x=a)}\; (x,z)=\oa.\]
Hence, by $\Sigma$-folding, $\forall_{u:\{ a\}_A}\; u=\oa$ so that $\{ a\}_A$ is contractible, as desired.
\begin{proof}
Let $a:A$ and let $\{a\}_A\defeq \setof{ x:A | x=a }$ be its fiber with respect to $\idfunc[A]$.
We show that $\{ a\}_A$ is contractible.
Then, discharging $a:A$, we get that $\fall{x:A} (\{ x\}_A$ is contractible); i.e.\ $\idfunc[A]$ is an equivalence.

Let $\oa \defeq (a,\refl{a}):\{ a\}_A$. As $(a,\refl{a}) = \oa$ we can use Id-induction \`{a} la Christine-Paulin to get
\[\fall{x:A}{z:x=a} ((x,z)=\oa).\]
Hence, by $\Sigma$-folding, $\fall{u:\{ a\}_A} (u=\oa)$.
Thus $\{ a\}_A$ is contractible, as desired.
\end{proof}
\begin{defn}\label{defn:homotopy-between-functions} A {\em homotopy, $f\simeq f'$} between maps $f,f':A\ra B$ is a function $h:\prod_{x:A}\; f(x)=f'(x)$.

\begin{defn}\label{defn:homotopy-between-functions}
A \textbf{homotopy, $f\sim f'$} between maps $f,f':A\ra B$ is a function $h:\prd{x:A} (f(x)=f'(x))$.
\end{defn}
\begin{lem}\label{lem:homotopy-props} $\;$

\begin{lem}\label{lem:homotopy-props}\
\begin{enumerate}
\item $\simeq$ is an equivalence relation on each function type $A\ra B$.
\item If $f:A\ra B$ then $f\circ 1_A\simeq f\simeq 1_B\circ f$.
\item If $f:A\ra B, g:B\ra C$ and $h:c\ra D$ then $h\circ (g\circ f)\;\simeq\; (h\circ g)\circ f$.
\item $\sim$ is an equivalence relation on each function type $A\ra B$.
That is, we have terms of types
\begin{gather*}
\prd{f:A\to B} (f\sim f)\\
\prd{f,g:A\to B} (f\sim g) \to (g\sim f)\\
\prd{f,g,h:A\to B} (f\sim g) \to (g\sim h) \to (f\sim h).
\end{gather*}
\item If $f:A\ra B$ then $f\circ \idfunc[A]\sim f\sim \idfunc[B]\circ f$.
\item If $f:A\ra B, g:B\ra C$ and $h:C\ra D$ then $h\circ (g\circ f)\;\sim\; (h\circ g)\circ f$.
\end{enumerate}
\end{lem}
\newpage

%% TODO: This should probably be folded into wherever we discuss function extensionality, so that $(f\sim g)\eqv (f=g)$.


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Expand All @@ -46,11 +63,11 @@ \section{Bijections and Isomorphisms}
\item $f$ is {\em an isomorphism} if it has $g:B\ra A$ that is both a left and a right
inverse where,
\begin{itemize} \item $g:B\ra A$ is a {\em left/right inverse} to $f$ if
$g\circ f\simeq 1_A$/$f\circ g\simeq 1_B$.
$g\circ f\sim \idfunc[A]$/$f\circ g\sim \idfunc[B]$.
\end{itemize}
\item $f$ is {\em (left/right)-invertible} if it has a (left/right) inverse.
\item $f$ is a {\em weak isomorphism} if it is both left invertible and right invertible.
\item We write $A\cong B/A\cong_w B$ if there is a(n) isomorphism/weak isomorphism $A\ra B$.
\item We write $A\cong B$ if there is an) isomorphism $A\ra B$, and $A\cong_w B$ if there is a weak isomorphism $A\to B$.
\end{enumerate}
\end{defn}

Expand All @@ -59,7 +76,7 @@ \section{Bijections and Isomorphisms}
\begin{enumerate}
\item $f:A\ra B$ is a surjection iff it is right-invertible.
\item If $f:A\ra B$ is left-invertible then it is injective.
\item $1_A:A\ra A$ is an isomorphism.
\item $\idfunc[A]:A\ra A$ is an isomorphism.
\item If $f:A\ra B$ and $g:B\ra C$ are isomorphisms then so is $g\circ f:A\ra C$.
\end{enumerate}
\end{thm}
Expand Down Expand Up @@ -91,7 +108,7 @@ \section{Adjoint Isomorphisms}
}%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\begin{defn} A function $f:A\ra B$ is an {\em adjoint isomorphism} if there are $g:B\ra A$, $\eta:\forall_{x:A}\; [x=g(fx)]$ and $\epsilon:\forall_{y:B}\; [f(gy)=y]$ such that
\[\forall_{x:A}\;[(\map{f}{\eta x}\; \ct\;\epsilon(fx))=1_{fx}].\]
\[\forall_{x:A}\;[(\map{f}{\eta x}\; \ct\;\epsilon(fx))=\refl{fx}].\]
We write $A\cong_a B$ if there is an adjoint isomorphism $A\ra B$.
\end{defn}
\begin{thm}\label{thm:equiv-iso-adj} The following are logically equivalent for $f:A\ra B$.
Expand All @@ -105,7 +122,7 @@ \section{Adjoint Isomorphisms}

\begin{description}
\item[$(i)\ra (ii)$]
Let $f:A\ra B$ be an equivalence. So each type $Cy$ is contractible, where for $y:B$, $Cy := \Sigma_{x:A}\; fx=y$. This means that
Let $f:A\ra B$ be an equivalence. So each type $Cy$ is contractible, where for $y:B$, $Cy \defeq \Sigma_{x:A}\; fx=y$. This means that
\[ \forall_{y:B}\exists_{u:Cy}\forall_{u':Cy}\; u'=u.\]
By $\Sigma$-unfolding we get
\[ \forall_{y:B}\exists_{x:A}\exists_{z:(fx=y)}
Expand All @@ -122,7 +139,7 @@ \section{Adjoint Isomorphisms}
\begin{cor}\label{cor:equivs-equiv}
For types $A,B$ we have the following sequence of two equivalences and a logical equivalence
between our four equivalence relations.
\[ (A\simeq B) \simeq (A\cong_a B) \simeq (A\cong_w B) \leftrightarrow (A\cong B).\]
\[ (\eqv A B) \simeq (A\cong_a B) \simeq (A\cong_w B) \leftrightarrow (A\cong B).\]
\end{cor}
\begin{proof} ??

Expand All @@ -148,9 +165,9 @@ \section{Identity Systems on a Type Universe}
\begin{enumerate}
\item $R_{A,B}\ra \eqv{A}{B}$ for $A,B:\bbU$
\item If $f_e:A\ra B$ and $g_e:B\ra A$ for $A,B:\bbU$ and $e:R_{A,B}$ such that
\[ f_{\sfr{A}} = g_{\sfr{A}}=1_A\mbox{ for } A:\bbU\]
\[ f_{\sfr{A}} = g_{\sfr{A}}=\idfunc[A]\mbox{ for } A:\bbU\]
then
\[ g_e\circ f_e =1_A\mbox{ and } f_e\circ g_e = 1_B
\[ g_e\circ f_e =\idfunc[A]\mbox{ and } f_e\circ g_e = \idfunc[B]
\mbox{ for } A,B:\bbU \mbox{ and } e:R_{A,B} \]
\end{enumerate}
\end{thm}
Expand All @@ -160,8 +177,8 @@ \section{Identity Systems on a Type Universe}
\begin{thm}
$\bbU$ is a univalent type universe iff $(Equiv^\bbU,\sfequiv{})$ is an identity system on $\bbU$, where
\[ Equiv^\bbU_{A,B}\defeq (\eqv{A}{B})\mbox{ for } A,B:\bbU\]
and, if $s_A: (1_A\mbox{ is an equivalence }A\ra A)$,
\[ \sfequiv{A}\defeq (1_A,s_A):\eqv{A}{A}\mbox{ for } A:\bbU.\]
and, if $s_A: (\idfunc[A]\mbox{ is an equivalence }A\ra A)$,
\[ \sfequiv{A}\defeq (\idfunc[A],s_A):\eqv{A}{A}\mbox{ for } A:\bbU.\]
\end{thm}


Expand Down
16 changes: 11 additions & 5 deletions hlevels.tex
Expand Up @@ -332,7 +332,7 @@ \section{Definition \& First Properties of H--Levels}
\end{thm}

\begin{defn}
A type $X$ is an {\em h-set}, if it is of h-level $2$.
A type $X$ is a {\em set}, if it is of h-level $2$.
\end{defn}

\begin{defn}
Expand All @@ -346,7 +346,7 @@ \section{Definition \& First Properties of H--Levels}
\begin{thm}\label{thm:h-set-uip-K}
For a type $X$ the following are equivalent:
\begin{enumerate}
\item $X$ is an h-set.
\item $X$ is a set.
\item $X$ has UIP.
\item $X$ satisfies Axiom K.
\end{enumerate}
Expand All @@ -358,15 +358,15 @@ \section{Definition \& First Properties of H--Levels}
\end{defn}

\begin{thm}
Let $X : \Type$. If $X$ has decidable equality, then $X$ is an h-set.
Let $X : \Type$. If $X$ has decidable equality, then $X$ is a set.
\end{thm}

\begin{proof}
By Theorem \ref{thm:h-set-uip-K} it suffices to show that $X$ satisfies Axiom K. This is so trivial that I can't even write it!
\end{proof}

\begin{thm}\label{prop:nat-is-set}
The type $\Nat$ of natural numbers is an h-set.
The type $\Nat$ of natural numbers is a set.
\end{thm}

\begin{proof}
Expand Down Expand Up @@ -414,4 +414,10 @@ \section{H--Level of types of h--level $n$}
\[\eqv{X}{X'} \hookrightarrow X \rightarrow X'\]
i.e. a map of h-level $1$. Thus it suffices to show that $X \rightarrow X'$ is of h-level $n$.
Since h-levels are preserved under $\prod$ and hence under the arrow type, this reduces to an assumption that $X'$ is of h-level $n$.
\end{proof}
\end{proof}


% Local Variables:
% mode: latex
% TeX-master: "main"
% End:

0 comments on commit 2595194

Please sign in to comment.