Rnmr1D is the main module in the NMRProcFlow web application
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
R
inst
man
src
vignettes
DESCRIPTION
NAMESPACE
README.md
Rnmr1D.Rproj

README.md

Rnmr1D

Rnmr1D is the main module in the NMRProcFlow web application (http://nmrprocflow.org) concerning the NMR spectra processing.

  • Inside NMRProcFlow, Rnmr1D allows users to process their NMR spectra within a GUI application and thus the macro-command sequence coming from this process can be saved.

  • Outside NMRProcFlow Rnmr1D become an R package allowing users to replay the macro-command sequence generated within NMRProcFlow. Moreover, without using NMRProcFlow, this package can also be used to replace any 'home-made script' by a macro-command sequence.

  • See the Macro-command Reference Guide to have more details about macro-commands.

Installation of some dependencies

packages <- c("impute", "MassSpecWavelet")
if (length(setdiff(packages, rownames(installed.packages()))) > 0) {
   source('http://bioconductor.org/biocLite.R');
   biocLite(setdiff(packages, rownames(installed.packages())));
}

packages <- c('doParallel', 'ptw', 'signal', 'speaq', 'base64enc', 'XML', 'igraph')
if (length(setdiff(packages, rownames(installed.packages()))) > 0) {
  install.packages(setdiff(packages, rownames(installed.packages())), , repos='http://cran.rstudio.com')
}

Installation of the R package

  • Note for Windows 7/10: Before performing the installation within R GUI it may require to specify the Compiler binaries path in the PATH environment variable so that the C++ code compilation will be correctly done ( check with Sys.getenv("PATH") )
require(devtools)
install_github("INRA/Rnmr1D", dependencies = TRUE)

Example of use

library(Rnmr1D)

# Test with the provided example data
data_dir <- system.file("extra", package = "Rnmr1D")
RAWDIR <- file.path(data_dir, "CD_BBI_16P02")
CMDFILE <- file.path(data_dir, "NP_macro_cmd.txt")
SAMPLEFILE <- file.path(data_dir, "Samples.txt")

# Detect the number of Cores
detectCores()

# Launch the pre-processing then the processing defined in the macro-command file
out <- Rnmr1D::doProcessing(RAWDIR, cmdfile=CMDFILE, samplefile=SAMPLEFILE, ncpu=detectCores())

# Have a look on returned data structure
ls(out)
ls(out$specMat)

### Stacked Plot with a perspective effect
dev.new()
plotSpecMat(out$specMat, ppm_lim=c(0.5,5), K=0.33)

### Overlaid Plot
dev.new()
plotSpecMat(out$specMat, ppm_lim=c(0.5,5), K=0, pY=0.1)

# Get the data matrix 
outMat <- getBucketsDataset(out, norm_meth='CSN')

# Get the Signal/Noise Ratio (SNR) matrix 
outSNR <- getSnrDataset(out, c(10.2,10.5), ratio=TRUE)

# Get the bucket table
outBucket <- getBucketsTable(out)

# Get the spectra data
spectra <- getSpectraData(out)

See a more complete illustation within the vignette

vignette("Rnmr1D")