Rnmr1D is the main module in the NMRProcFlow web application (http://nmrprocflow.org) concerning the NMR spectra processing.
-
Inside NMRProcFlow, Rnmr1D allows users to process their NMR spectra within a GUI application and thus the macro-command sequence coming from this process can be saved.
-
Outside NMRProcFlow Rnmr1D become an R package allowing users to replay the macro-command sequence generated within NMRProcFlow. Moreover, without using NMRProcFlow, this package can also be used to replace any 'home-made script' by a macro-command sequence.
-
See the Macro-command Reference Guide to have more details about macro-commands.
-
You may need to install a C++ compiler if not the case yet (see https://teuder.github.io/rcpp4everyone_en/020_install.html)
-
Some R packages:
packages <- c("impute", "MassSpecWavelet","pcaMethods")
if (length(setdiff(packages, rownames(installed.packages()))) > 0) {
BiocManager::install(setdiff(packages, rownames(installed.packages())));
}
packages <- c('doParallel', 'ptw', 'signal', 'speaq', 'base64enc', 'XML', 'igraph', 'ggplot2', 'plotly', 'plyr')
if (length(setdiff(packages, rownames(installed.packages()))) > 0) {
install.packages(setdiff(packages, rownames(installed.packages())), repos='http://cran.rstudio.com')
}
- Note for Windows 10: Before performing the installation within R GUI it may require to specify the Compiler binaries path in the PATH environment variable so that the C++ code compilation will be correctly done ( check with Sys.getenv("PATH") )
require(devtools)
install_github("INRA/Rnmr1D", dependencies = TRUE)
library(Rnmr1D)
# Test with the provided example data
data_dir <- system.file("extra", package = "Rnmr1D")
RAWDIR <- file.path(data_dir, "CD_BBI_16P02")
CMDFILE <- file.path(data_dir, "NP_macro_cmd.txt")
SAMPLEFILE <- file.path(data_dir, "Samples.txt")
# Detect the number of Cores
detectCores()
# Launch the pre-processing then the processing defined in the macro-command file
out <- Rnmr1D::doProcessing(RAWDIR, cmdfile=CMDFILE, samplefile=SAMPLEFILE, ncpu=detectCores())
# Have a look on returned data structure
ls(out)
ls(out$specMat)
### Stacked Plot with a perspective effect
dev.new()
plotSpecMat(out$specMat, ppm_lim=c(0.5,5), K=0.33)
### Overlaid Plot
dev.new()
plotSpecMat(out$specMat, ppm_lim=c(0.5,5), K=0, pY=0.1)
# Get the data matrix
outMat <- getBucketsDataset(out, norm_meth='CSN')
# Get the Signal/Noise Ratio (SNR) matrix
outSNR <- getSnrDataset(out, c(10.2,10.5), ratio=TRUE)
# Get the bucket table
outBucket <- getBucketsTable(out)
# Get the spectra data
spectra <- getSpectraData(out)
vignette("Rnmr1D")
You can access the vignette online : https://nmrprocflow.org/themes/html/Rnmr1D.html