Permalink
Switch branches/tags
Nothing to show
Find file Copy path
Fetching contributors…
Cannot retrieve contributors at this time
1348 lines (1235 sloc) 45.8 KB
// WSPR transmitter for the Raspberry Pi. See accompanying README
// file for a description on how to use this code.
// License:
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
// ha7ilm: added RPi2 support based on a patch to PiFmRds by Cristophe
// Jacquet and Richard Hirst: http://git.io/vn7O9
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <ctype.h>
#include <dirent.h>
#include <math.h>
#include <cmath>
#include <cstdint>
#include <fcntl.h>
#include <assert.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <signal.h>
#include <malloc.h>
#include <time.h>
#include <sys/time.h>
#include <getopt.h>
#include <vector>
#include <iostream>
#include <sstream>
#include <iomanip>
#include <algorithm>
#include <pthread.h>
#include <sys/timex.h>
#ifdef __cplusplus
extern "C" {
#include "mailbox.h"
}
#endif /* __cplusplus */
// Note on accessing memory in RPi:
//
// There are 3 (yes three) address spaces in the Pi:
// Physical addresses
// These are the actual address locations of the RAM and are equivalent
// to offsets into /dev/mem.
// The peripherals (DMA engine, PWM, etc.) are located at physical
// address 0x2000000 for RPi1 and 0x3F000000 for RPi2/3.
// Virtual addresses
// These are the addresses that a program sees and can read/write to.
// Addresses 0x00000000 through 0xBFFFFFFF are the addresses available
// to a program running in user space.
// Addresses 0xC0000000 and above are available only to the kernel.
// The peripherals start at address 0xF2000000 in virtual space but
// this range is only accessible by the kernel. The kernel could directly
// access peripherals from virtual addresses. It is not clear to me my
// a user space application running as 'root' does not have access to this
// memory range.
// Bus addresses
// This is a different (virtual?) address space that also maps onto
// physical memory.
// The peripherals start at address 0x7E000000 of the bus address space.
// The DRAM is also available in bus address space in 4 different locations:
// 0x00000000 "L1 and L2 cached alias"
// 0x40000000 "L2 cache coherent (non allocating)"
// 0x80000000 "L2 cache (only)"
// 0xC0000000 "Direct, uncached access"
//
// Accessing peripherals from user space (virtual addresses):
// The technique used in this program is that mmap is used to map portions of
// /dev/mem to an arbitrary virtual address. For example, to access the
// GPIO's, the gpio range of addresses in /dev/mem (physical addresses) are
// mapped to a kernel chosen virtual address. After the mapping has been
// set up, writing to the kernel chosen virtual address will actually
// write to the GPIO addresses in physical memory.
//
// Accessing RAM from DMA engine
// The DMA engine is programmed by accessing the peripheral registers but
// must use bus addresses to access memory. Thus, to use the DMA engine to
// move memory from one virtual address to another virtual address, one needs
// to first find the physical addresses that corresponds to the virtual
// addresses. Then, one needs to find the bus addresses that corresponds to
// those physical addresses. Finally, the DMA engine can be programmed. i.e.
// DMA engine access should use addresses starting with 0xC.
//
// The perhipherals in the Broadcom documentation are described using their bus
// addresses and structures are created and calculations performed in this
// program to figure out how to access them with virtual addresses.
#define ABORT(a) exit(a)
// Used for debugging
#define MARK std::cout << "Currently in file: " << __FILE__ << " line: " << __LINE__ << std::endl
// PLLD clock frequency.
// For RPi1, after NTP converges, these is a 2.5 PPM difference between
// the PPM correction reported by NTP and the actual frequency offset of
// the crystal. This 2.5 PPM offset is not present in the RPi2 and RPi3.
// This 2.5 PPM offset is compensated for here, but only for the RPi1.
#ifdef RPI23
#define F_PLLD_CLK (500000000.0)
#else
#ifdef RPI1
#define F_PLLD_CLK (500000000.0*(1-2.500e-6))
#else
#error "RPI version macro is not defined"
#endif
#endif
// Empirical value for F_PWM_CLK that produces WSPR symbols that are 'close' to
// 0.682s long. For some reason, despite the use of DMA, the load on the PI
// affects the TX length of the symbols. However, the varying symbol length is
// compensated for in the main loop.
#define F_PWM_CLK_INIT (31156186.6125761)
// WSRP nominal symbol time
#define WSPR_SYMTIME (8192.0/12000.0)
// How much random frequency offset should be added to WSPR transmissions
// if the --offset option has been turned on.
#define WSPR_RAND_OFFSET 80
#define WSPR15_RAND_OFFSET 8
// Choose proper base address depending on RPI1/RPI23 macro from makefile.
// PERI_BASE_PHYS is the base address of the peripherals, in physical
// address space.
#ifdef RPI23
#define PERI_BASE_PHYS 0x3f000000
#define MEM_FLAG 0x04
#else
#ifdef RPI1
#define PERI_BASE_PHYS 0x20000000
#define MEM_FLAG 0x0c
#else
#error "RPI version macro is not defined"
#endif
#endif
#define PAGE_SIZE (4*1024)
#define BLOCK_SIZE (4*1024)
// peri_base_virt is the base virtual address that a userspace program (this
// program) can use to read/write to the the physical addresses controlling
// the peripherals. This address is mapped at runtime using mmap and /dev/mem.
// This must be declared global so that it can be called by the atexit
// function.
volatile unsigned *peri_base_virt = NULL;
// Given an address in the bus address space of the peripherals, this
// macro calculates the appropriate virtual address to use to access
// the requested bus address space. It does this by first subtracting
// 0x7e000000 from the supplied bus address to calculate the offset into
// the peripheral address space. Then, this offset is added to peri_base_virt
// Which is the base address of the peripherals, in virtual address space.
#define ACCESS_BUS_ADDR(buss_addr) *(volatile int*)((long int)peri_base_virt+(buss_addr)-0x7e000000)
// Given a bus address in the peripheral address space, set or clear a bit.
#define SETBIT_BUS_ADDR(base, bit) ACCESS_BUS_ADDR(base) |= 1<<bit
#define CLRBIT_BUS_ADDR(base, bit) ACCESS_BUS_ADDR(base) &= ~(1<<bit)
// The following are all bus addresses.
#define GPIO_BUS_BASE (0x7E200000)
#define CM_GP0CTL_BUS (0x7e101070)
#define CM_GP0DIV_BUS (0x7e101074)
#define PADS_GPIO_0_27_BUS (0x7e10002c)
#define CLK_BUS_BASE (0x7E101000)
#define DMA_BUS_BASE (0x7E007000)
#define PWM_BUS_BASE (0x7e20C000) /* PWM controller */
// Convert from a bus address to a physical address.
#define BUS_TO_PHYS(x) ((x)&~0xC0000000)
typedef enum {WSPR,TONE} mode_type;
// Structure used to control clock generator
struct GPCTL {
char SRC : 4;
char ENAB : 1;
char KILL : 1;
char : 1;
char BUSY : 1;
char FLIP : 1;
char MASH : 2;
unsigned int : 13;
char PASSWD : 8;
};
// Structure used to tell the DMA engine what to do
struct CB {
volatile unsigned int TI;
volatile unsigned int SOURCE_AD;
volatile unsigned int DEST_AD;
volatile unsigned int TXFR_LEN;
volatile unsigned int STRIDE;
volatile unsigned int NEXTCONBK;
volatile unsigned int RES1;
volatile unsigned int RES2;
};
// DMA engine status registers
struct DMAregs {
volatile unsigned int CS;
volatile unsigned int CONBLK_AD;
volatile unsigned int TI;
volatile unsigned int SOURCE_AD;
volatile unsigned int DEST_AD;
volatile unsigned int TXFR_LEN;
volatile unsigned int STRIDE;
volatile unsigned int NEXTCONBK;
volatile unsigned int DEBUG;
};
// Virtual and bus addresses of a page of physical memory.
struct PageInfo {
void* b; // bus address
void* v; // virtual address
};
// Must be global so that exit handlers can access this.
static struct {
int handle; /* From mbox_open() */
unsigned mem_ref = 0; /* From mem_alloc() */
unsigned bus_addr; /* From mem_lock() */
unsigned char *virt_addr = NULL; /* From mapmem() */ //ha7ilm: originally uint8_t
unsigned pool_size;
unsigned pool_cnt;
} mbox;
// Use the mbox interface to allocate a single chunk of memory to hold
// all the pages we will need. The bus address and the virtual address
// are saved in the mbox structure.
void allocMemPool(unsigned numpages) {
// Allocate space.
mbox.mem_ref = mem_alloc(mbox.handle, 4096*numpages, 4096, MEM_FLAG);
// Lock down the allocated space and return its bus address.
mbox.bus_addr = mem_lock(mbox.handle, mbox.mem_ref);
// Conert the bus address to a physical address and map this to virtual
// (aka user) space.
mbox.virt_addr = (unsigned char*)mapmem(BUS_TO_PHYS(mbox.bus_addr), 4096*numpages);
// The number of pages in the pool. Never changes!
mbox.pool_size=numpages;
// How many of the created pages have actually been used.
mbox.pool_cnt=0;
//printf("allocMemoryPool bus_addr=%x virt_addr=%x mem_ref=%x\n",mbox.bus_addr,(unsigned)mbox.virt_addr,mbox.mem_ref);
}
// Returns the virtual and bus address (NOT physical address!) of another
// page in the pool.
void getRealMemPageFromPool(void ** vAddr, void **bAddr) {
if (mbox.pool_cnt>=mbox.pool_size) {
std::cerr << "Error: unable to allocated more pages!" << std::endl;
ABORT(-1);
}
unsigned offset = mbox.pool_cnt*4096;
*vAddr = (void*)(((unsigned)mbox.virt_addr) + offset);
*bAddr = (void*)(((unsigned)mbox.bus_addr) + offset);
//printf("getRealMemoryPageFromPool bus_addr=%x virt_addr=%x\n", (unsigned)*pAddr,(unsigned)*vAddr);
mbox.pool_cnt++;
}
// Free the memory pool
void deallocMemPool() {
if(mbox.virt_addr!=NULL) {
unmapmem(mbox.virt_addr, mbox.pool_size*4096);
}
if (mbox.mem_ref!=0) {
mem_unlock(mbox.handle, mbox.mem_ref);
mem_free(mbox.handle, mbox.mem_ref);
}
}
// Disable the PWM clock and wait for it to become 'not busy'.
void disable_clock() {
// Check if mapping has been set up yet.
if (peri_base_virt==NULL) {
return;
}
// Disable the clock (in case it's already running) by reading current
// settings and only clearing the enable bit.
auto settings=ACCESS_BUS_ADDR(CM_GP0CTL_BUS);
// Clear enable bit and add password
settings=(settings&0x7EF)|0x5A000000;
// Disable
ACCESS_BUS_ADDR(CM_GP0CTL_BUS) = *((int*)&settings);
// Wait for clock to not be busy.
while (true) {
if (!(ACCESS_BUS_ADDR(CM_GP0CTL_BUS)&(1<<7))) {
break;
}
}
}
// Turn on TX
void txon() {
// Set function select for GPIO4.
// Fsel 000 => input
// Fsel 001 => output
// Fsel 100 => alternate function 0
// Fsel 101 => alternate function 1
// Fsel 110 => alternate function 2
// Fsel 111 => alternate function 3
// Fsel 011 => alternate function 4
// Fsel 010 => alternate function 5
// Function select for GPIO is configured as 'b100 which selects
// alternate function 0 for GPIO4. Alternate function 0 is GPCLK0.
// See section 6.2 of Arm Peripherals Manual.
SETBIT_BUS_ADDR(GPIO_BUS_BASE , 14);
CLRBIT_BUS_ADDR(GPIO_BUS_BASE , 13);
CLRBIT_BUS_ADDR(GPIO_BUS_BASE , 12);
// Set GPIO drive strength, more info: http://www.scribd.com/doc/101830961/GPIO-Pads-Control2
//ACCESS_BUS_ADDR(PADS_GPIO_0_27_BUS) = 0x5a000018 + 0; //2mA -3.4dBm
//ACCESS_BUS_ADDR(PADS_GPIO_0_27_BUS) = 0x5a000018 + 1; //4mA +2.1dBm
//ACCESS_BUS_ADDR(PADS_GPIO_0_27_BUS) = 0x5a000018 + 2; //6mA +4.9dBm
//ACCESS_BUS_ADDR(PADS_GPIO_0_27_BUS) = 0x5a000018 + 3; //8mA +6.6dBm(default)
//ACCESS_BUS_ADDR(PADS_GPIO_0_27_BUS) = 0x5a000018 + 4; //10mA +8.2dBm
//ACCESS_BUS_ADDR(PADS_GPIO_0_27_BUS) = 0x5a000018 + 5; //12mA +9.2dBm
//ACCESS_BUS_ADDR(PADS_GPIO_0_27_BUS) = 0x5a000018 + 6; //14mA +10.0dBm
ACCESS_BUS_ADDR(PADS_GPIO_0_27_BUS) = 0x5a000018 + 7; //16mA +10.6dBm
disable_clock();
// Set clock source as PLLD.
struct GPCTL setupword = {6/*SRC*/, 0, 0, 0, 0, 3,0x5a};
// Enable clock.
setupword = {6/*SRC*/, 1, 0, 0, 0, 3,0x5a};
ACCESS_BUS_ADDR(CM_GP0CTL_BUS) = *((int*)&setupword);
}
// Turn transmitter on
void txoff() {
//struct GPCTL setupword = {6/*SRC*/, 0, 0, 0, 0, 1,0x5a};
//ACCESS_BUS_ADDR(CM_GP0CTL_BUS) = *((int*)&setupword);
disable_clock();
}
// Transmit symbol sym for tsym seconds.
//
// TODO:
// Upon entering this function at the beginning of a WSPR transmission, we
// do not know which DMA table entry is being processed by the DMA engine.
#define PWM_CLOCKS_PER_ITER_NOMINAL 1000
void txSym(
const int & sym_num,
const double & center_freq,
const double & tone_spacing,
const double & tsym,
const std::vector <double> & dma_table_freq,
const double & f_pwm_clk,
struct PageInfo instrs[],
struct PageInfo & constPage,
int & bufPtr
) {
const int f0_idx=sym_num*2;
const int f1_idx=f0_idx+1;
const double f0_freq=dma_table_freq[f0_idx];
const double f1_freq=dma_table_freq[f1_idx];
const double tone_freq=center_freq-1.5*tone_spacing+sym_num*tone_spacing;
// Double check...
assert((tone_freq>=f0_freq)&&(tone_freq<=f1_freq));
const double f0_ratio=1.0-(tone_freq-f0_freq)/(f1_freq-f0_freq);
//cout << "f0_ratio = " << f0_ratio << std::endl;
assert ((f0_ratio>=0)&&(f0_ratio<=1));
const long int n_pwmclk_per_sym=round(f_pwm_clk*tsym);
long int n_pwmclk_transmitted=0;
long int n_f0_transmitted=0;
//printf("<instrs[bufPtr] begin=%x>",(unsigned)&instrs[bufPtr]);
while (n_pwmclk_transmitted<n_pwmclk_per_sym) {
// Number of PWM clocks for this iteration
long int n_pwmclk=PWM_CLOCKS_PER_ITER_NOMINAL;
// Iterations may produce spurs around the main peak based on the iteration
// frequency. Randomize the iteration period so as to spread this peak
// around.
n_pwmclk+=round((rand()/((double)RAND_MAX+1.0)-.5)*n_pwmclk)*1;
if (n_pwmclk_transmitted+n_pwmclk>n_pwmclk_per_sym) {
n_pwmclk=n_pwmclk_per_sym-n_pwmclk_transmitted;
}
// Calculate number of clocks to transmit f0 during this iteration so
// that the long term average is as close to f0_ratio as possible.
const long int n_f0=round(f0_ratio*(n_pwmclk_transmitted+n_pwmclk))-n_f0_transmitted;
const long int n_f1=n_pwmclk-n_f0;
// Configure the transmission for this iteration
// Set GPIO pin to transmit f0
bufPtr++;
while( ACCESS_BUS_ADDR(DMA_BUS_BASE + 0x04 /* CurBlock*/) == (long int)(instrs[bufPtr].b)) usleep(100);
((struct CB*)(instrs[bufPtr].v))->SOURCE_AD = (long int)constPage.b + f0_idx*4;
// Wait for n_f0 PWM clocks
bufPtr++;
while( ACCESS_BUS_ADDR(DMA_BUS_BASE + 0x04 /* CurBlock*/) == (long int)(instrs[bufPtr].b)) usleep(100);
((struct CB*)(instrs[bufPtr].v))->TXFR_LEN = n_f0;
// Set GPIO pin to transmit f1
bufPtr++;
while( ACCESS_BUS_ADDR(DMA_BUS_BASE + 0x04 /* CurBlock*/) == (long int)(instrs[bufPtr].b)) usleep(100);
((struct CB*)(instrs[bufPtr].v))->SOURCE_AD = (long int)constPage.b + f1_idx*4;
// Wait for n_f1 PWM clocks
bufPtr=(bufPtr+1) % (1024);
while( ACCESS_BUS_ADDR(DMA_BUS_BASE + 0x04 /* CurBlock*/) == (long int)(instrs[bufPtr].b)) usleep(100);
((struct CB*)(instrs[bufPtr].v))->TXFR_LEN = n_f1;
// Update counters
n_pwmclk_transmitted+=n_pwmclk;
n_f0_transmitted+=n_f0;
}
//printf("<instrs[bufPtr]=%x %x>",(unsigned)instrs[bufPtr].v,(unsigned)instrs[bufPtr].b);
}
// Turn off (reset) DMA engine
void unSetupDMA(){
// Check if mapping has been set up yet.
if (peri_base_virt==NULL) {
return;
}
//cout << "Exiting!" << std::endl;
struct DMAregs* DMA0 = (struct DMAregs*)&(ACCESS_BUS_ADDR(DMA_BUS_BASE));
DMA0->CS =1<<31; // reset dma controller
txoff();
}
// Truncate at bit lsb. i.e. set all bits less than lsb to zero.
double bit_trunc(
const double & d,
const int & lsb
) {
return floor(d/pow(2.0,lsb))*pow(2.0,lsb);
}
// Program the tuning words into the DMA table.
void setupDMATab(
const double & center_freq_desired,
const double & tone_spacing,
const double & plld_actual_freq,
std::vector <double> & dma_table_freq,
double & center_freq_actual,
struct PageInfo & constPage
){
// Make sure that all the WSPR tones can be produced solely by
// varying the fractional part of the frequency divider.
center_freq_actual=center_freq_desired;
double div_lo=bit_trunc(plld_actual_freq/(center_freq_desired-1.5*tone_spacing),-12)+pow(2.0,-12);
double div_hi=bit_trunc(plld_actual_freq/(center_freq_desired+1.5*tone_spacing),-12);
if (floor(div_lo)!=floor(div_hi)) {
center_freq_actual=plld_actual_freq/floor(div_lo)-1.6*tone_spacing;
std::stringstream temp;
temp << std::setprecision(6) << std::fixed << " Warning: center frequency has been changed to " << center_freq_actual/1e6 << " MHz" << std::endl;
std::cout << temp.str();
std::cout << " because of hardware limitations!" << std::endl;
}
// Create DMA table of tuning words. WSPR tone i will use entries 2*i and
// 2*i+1 to generate the appropriate tone.
double tone0_freq=center_freq_actual-1.5*tone_spacing;
std::vector <long int> tuning_word(1024);
for (int i=0;i<8;i++) {
double tone_freq=tone0_freq+(i>>1)*tone_spacing;
double div=bit_trunc(plld_actual_freq/tone_freq,-12);
if (i%2==0) {
div=div+pow(2.0,-12);
}
tuning_word[i]=((int)(div*pow(2.0,12)));
}
// Fill the remaining table, just in case...
for (int i=8;i<1024;i++) {
double div=500+i;
tuning_word[i]=((int)(div*pow(2.0,12)));
}
// Program the table
dma_table_freq.resize(1024);
for (int i=0;i<1024;i++) {
dma_table_freq[i]=plld_actual_freq/(tuning_word[i]/pow(2.0,12));
((int*)(constPage.v))[i] = (0x5a<<24)+tuning_word[i];
if ((i%2==0)&&(i<8)) {
assert((tuning_word[i]&(~0xfff))==(tuning_word[i+1]&(~0xfff)));
}
}
}
// Create the memory structures needed by the DMA engine and perform initial
// clock configuration.
void setupDMA(
struct PageInfo & constPage,
struct PageInfo & instrPage,
struct PageInfo instrs[]
){
allocMemPool(1025);
// Allocate a page of ram for the constants
getRealMemPageFromPool(&constPage.v, &constPage.b);
// Create 1024 instructions allocating one page at a time.
// Even instructions target the GP0 Clock divider
// Odd instructions target the PWM FIFO
int instrCnt = 0;
while (instrCnt<1024) {
// Allocate a page of ram for the instructions
getRealMemPageFromPool(&instrPage.v, &instrPage.b);
// make copy instructions
// Only create as many instructions as will fit in the recently
// allocated page. If not enough space for all instructions, the
// next loop will allocate another page.
struct CB* instr0= (struct CB*)instrPage.v;
int i;
for (i=0; i<(signed)(4096/sizeof(struct CB)); i++) {
instrs[instrCnt].v = (void*)((long int)instrPage.v + sizeof(struct CB)*i);
instrs[instrCnt].b = (void*)((long int)instrPage.b + sizeof(struct CB)*i);
instr0->SOURCE_AD = (unsigned long int)constPage.b+2048;
instr0->DEST_AD = PWM_BUS_BASE+0x18 /* FIF1 */;
instr0->TXFR_LEN = 4;
instr0->STRIDE = 0;
//instr0->NEXTCONBK = (int)instrPage.b + sizeof(struct CB)*(i+1);
instr0->TI = (1/* DREQ */<<6) | (5 /* PWM */<<16) | (1<<26/* no wide*/) ;
instr0->RES1 = 0;
instr0->RES2 = 0;
// Shouldn't this be (instrCnt%2) ???
if (i%2) {
instr0->DEST_AD = CM_GP0DIV_BUS;
instr0->STRIDE = 4;
instr0->TI = (1<<26/* no wide*/) ;
}
if (instrCnt!=0) ((struct CB*)(instrs[instrCnt-1].v))->NEXTCONBK = (long int)instrs[instrCnt].b;
instr0++;
instrCnt++;
}
}
// Create a circular linked list of instructions
((struct CB*)(instrs[1023].v))->NEXTCONBK = (long int)instrs[0].b;
// set up a clock for the PWM
ACCESS_BUS_ADDR(CLK_BUS_BASE + 40*4 /*PWMCLK_CNTL*/) = 0x5A000026; // Source=PLLD and disable
usleep(1000);
//ACCESS_BUS_ADDR(CLK_BUS_BASE + 41*4 /*PWMCLK_DIV*/) = 0x5A002800;
ACCESS_BUS_ADDR(CLK_BUS_BASE + 41*4 /*PWMCLK_DIV*/) = 0x5A002000; // set PWM div to 2, for 250MHz
ACCESS_BUS_ADDR(CLK_BUS_BASE + 40*4 /*PWMCLK_CNTL*/) = 0x5A000016; // Source=PLLD and enable
usleep(1000);
// set up pwm
ACCESS_BUS_ADDR(PWM_BUS_BASE + 0x0 /* CTRL*/) = 0;
usleep(1000);
ACCESS_BUS_ADDR(PWM_BUS_BASE + 0x4 /* status*/) = -1; // clear errors
usleep(1000);
// Range should default to 32, but it is set at 2048 after reset on my RPi.
ACCESS_BUS_ADDR(PWM_BUS_BASE + 0x10)=32;
ACCESS_BUS_ADDR(PWM_BUS_BASE + 0x20)=32;
ACCESS_BUS_ADDR(PWM_BUS_BASE + 0x0 /* CTRL*/) = -1; //(1<<13 /* Use fifo */) | (1<<10 /* repeat */) | (1<<9 /* serializer */) | (1<<8 /* enable ch */) ;
usleep(1000);
ACCESS_BUS_ADDR(PWM_BUS_BASE + 0x8 /* DMAC*/) = (1<<31 /* DMA enable */) | 0x0707;
//activate dma
struct DMAregs* DMA0 = (struct DMAregs*)&(ACCESS_BUS_ADDR(DMA_BUS_BASE));
DMA0->CS =1<<31; // reset
DMA0->CONBLK_AD=0;
DMA0->TI=0;
DMA0->CONBLK_AD = (unsigned long int)(instrPage.b);
DMA0->CS =(1<<0)|(255 <<16); // enable bit = 0, clear end flag = 1, prio=19-16
}
// Convert string to uppercase
void to_upper(
char *str
) {
while(*str) {
*str = toupper(*str);
str++;
}
}
// Encode call, locator, and dBm into WSPR codeblock.
void wspr(
const char* call,
const char* l_pre,
const char* dbm,
unsigned char* symbols
) {
// pack prefix in nadd, call in n1, grid, dbm in n2
char* c, buf[16];
strncpy(buf, call, 16);
c=buf;
to_upper(c);
unsigned long ng,nadd=0;
if(strchr(c, '/')){ //prefix-suffix
nadd=2;
int i=strchr(c, '/')-c; //stroke position
int n=strlen(c)-i-1; //suffix len, prefix-call len
c[i]='\0';
if(n==1) ng=60000-32768+(c[i+1]>='0'&&c[i+1]<='9'?c[i+1]-'0':c[i+1]==' '?38:c[i+1]-'A'+10); // suffix /A to /Z, /0 to /9
if(n==2) ng=60000+26+10*(c[i+1]-'0')+(c[i+2]-'0'); // suffix /10 to /99
if(n>2){ // prefix EA8/, right align
ng=(i<3?36:c[i-3]>='0'&&c[i-3]<='9'?c[i-3]-'0':c[i-3]-'A'+10);
ng=37*ng+(i<2?36:c[i-2]>='0'&&c[i-2]<='9'?c[i-2]-'0':c[i-2]-'A'+10);
ng=37*ng+(i<1?36:c[i-1]>='0'&&c[i-1]<='9'?c[i-1]-'0':c[i-1]-'A'+10);
if(ng<32768) nadd=1; else ng=ng-32768;
c=c+i+1;
}
}
int i=(isdigit(c[2])?2:isdigit(c[1])?1:0); //last prefix digit of de-suffixed/de-prefixed callsign
int n=strlen(c)-i-1; //2nd part of call len
unsigned long n1;
n1=(i<2?36:c[i-2]>='0'&&c[i-2]<='9'?c[i-2]-'0':c[i-2]-'A'+10);
n1=36*n1+(i<1?36:c[i-1]>='0'&&c[i-1]<='9'?c[i-1]-'0':c[i-1]-'A'+10);
n1=10*n1+c[i]-'0';
n1=27*n1+(n<1?26:c[i+1]-'A');
n1=27*n1+(n<2?26:c[i+2]-'A');
n1=27*n1+(n<3?26:c[i+3]-'A');
//if(rand() % 2) nadd=0;
if(!nadd){
// Copy locator locally since it is declared const and we cannot modify
// its contents in-place.
char l[4];
strncpy(l, l_pre, 4);
to_upper(l); //grid square Maidenhead locator (uppercase)
ng=180*(179-10*(l[0]-'A')-(l[2]-'0'))+10*(l[1]-'A')+(l[3]-'0');
}
int p = atoi(dbm); //EIRP in dBm={0,3,7,10,13,17,20,23,27,30,33,37,40,43,47,50,53,57,60}
int corr[]={0,-1,1,0,-1,2,1,0,-1,1};
p=p>60?60:p<0?0:p+corr[p%10];
unsigned long n2=(ng<<7)|(p+64+nadd);
// pack n1,n2,zero-tail into 50 bits
char packed[11] = {
static_cast<char>(n1>>20),
static_cast<char>(n1>>12),
static_cast<char>(n1>>4),
static_cast<char>(((n1&0x0f)<<4)|((n2>>18)&0x0f)),
static_cast<char>(n2>>10),
static_cast<char>(n2>>2),
static_cast<char>((n2&0x03)<<6),
0,
0,
0,
0
};
// convolutional encoding K=32, r=1/2, Layland-Lushbaugh polynomials
int k = 0;
int j,s;
int nstate = 0;
unsigned char symbol[176];
for(j=0;j!=sizeof(packed);j++){
for(i=7;i>=0;i--){
unsigned long poly[2] = { 0xf2d05351L, 0xe4613c47L };
nstate = (nstate<<1) | ((packed[j]>>i)&1);
for(s=0;s!=2;s++){ //convolve
unsigned long n = nstate & poly[s];
int even = 0; // even := parity(n)
while(n){
even = 1 - even;
n = n & (n - 1);
}
symbol[k] = even;
k++;
}
}
}
// interleave symbols
const unsigned char npr3[162] = {
1,1,0,0,0,0,0,0,1,0,0,0,1,1,1,0,0,0,1,0,0,1,0,1,1,1,1,0,0,0,0,0,
0,0,1,0,0,1,0,1,0,0,0,0,0,0,1,0,1,1,0,0,1,1,0,1,0,0,0,1,1,0,1,0,
0,0,0,1,1,0,1,0,1,0,1,0,1,0,0,1,0,0,1,0,1,1,0,0,0,1,1,0,1,0,1,0,
0,0,1,0,0,0,0,0,1,0,0,1,0,0,1,1,1,0,1,1,0,0,1,1,0,1,0,0,0,1,1,1,
0,0,0,0,0,1,0,1,0,0,1,1,0,0,0,0,0,0,0,1,1,0,1,0,1,1,0,0,0,1,1,0,
0,0 };
for(i=0;i!=162;i++){
// j0 := bit reversed_values_smaller_than_161[i]
unsigned char j0;
p=-1;
for(k=0;p!=i;k++){
for(j=0;j!=8;j++) // j0:=bit_reverse(k)
j0 = ((k>>j)&1)|(j0<<1);
if(j0<162)
p++;
}
symbols[j0]=npr3[j0]|symbol[i]<<1; //interleave and add sync std::vector
}
}
// Wait for the system clock's minute to reach one second past 'minute'
void wait_every(
int minute
) {
time_t t;
struct tm* ptm;
for(;;){
time(&t);
ptm = gmtime(&t);
if((ptm->tm_min % minute) == 0 && ptm->tm_sec == 0) break;
usleep(1000);
}
usleep(1000000); // wait another second
}
void print_usage() {
std::cout << "Usage:" << std::endl;
std::cout << " wspr [options] callsign locator tx_pwr_dBm f1 <f2> <f3> ..." << std::endl;
std::cout << " OR" << std::endl;
std::cout << " wspr [options] --test-tone f" << std::endl;
std::cout << std::endl;
std::cout << "Options:" << std::endl;
std::cout << " -h --help" << std::endl;
std::cout << " Print out this help screen." << std::endl;
std::cout << " -p --ppm ppm" << std::endl;
std::cout << " Known PPM correction to 19.2MHz RPi nominal crystal frequency." << std::endl;
std::cout << " -s --self-calibration" << std::endl;
std::cout << " Check NTP before every transmission to obtain the PPM error of the" << std::endl;
std::cout << " crystal (default setting!)." << std::endl;
std::cout << " -f --free-running" << std::endl;
std::cout << " Do not use NTP to correct frequency error of RPi crystal." << std::endl;
std::cout << " -r --repeat" << std::endl;
std::cout << " Repeatedly, and in order, transmit on all the specified command line freqs." << std::endl;
std::cout << " -x --terminate <n>" << std::endl;
std::cout << " Terminate after n transmissions have been completed." << std::endl;
std::cout << " -o --offset" << std::endl;
std::cout << " Add a random frequency offset to each transmission:" << std::endl;
std::cout << " +/- " << WSPR_RAND_OFFSET << " Hz for WSPR" << std::endl;
std::cout << " +/- " << WSPR15_RAND_OFFSET << " Hz for WSPR-15" << std::endl;
std::cout << " -t --test-tone freq" << std::endl;
std::cout << " Simply output a test tone at the specified frequency. Only used" << std::endl;
std::cout << " for debugging and to verify calibration." << std::endl;
std::cout << " -n --no-delay" << std::endl;
std::cout << " Transmit immediately, do not wait for a WSPR TX window. Used" << std::endl;
std::cout << " for testing only." << std::endl;
std::cout << std::endl;
std::cout << "Frequencies can be specified either as an absolute TX carrier frequency, or" << std::endl;
std::cout << "using one of the following strings. If a string is used, the transmission" << std::endl;
std::cout << "will happen in the middle of the WSPR region of the selected band." << std::endl;
std::cout << " LF LF-15 MF MF-15 160m 160m-15 80m 60m 40m 30m 20m 17m 15m 12m 10m 6m 4m 2m" << std::endl;
std::cout << "<B>-15 indicates the WSPR-15 region of band <B>." << std::endl;
std::cout << std::endl;
std::cout << "Transmission gaps can be created by specifying a TX frequency of 0" << std::endl;
}
void parse_commandline(
// Inputs
const int & argc,
char * const argv[],
// Outputs
std::string & callsign,
std::string & locator,
std::string & tx_power,
std::vector <double> & center_freq_set,
double & ppm,
bool & self_cal,
bool & repeat,
bool & random_offset,
double & test_tone,
bool & no_delay,
mode_type & mode,
int & terminate
) {
// Default values
ppm=0;
self_cal=true;
repeat=false;
random_offset=false;
test_tone=NAN;
no_delay=false;
mode=WSPR;
terminate=-1;
static struct option long_options[] = {
{"help", no_argument, 0, 'h'},
{"ppm", required_argument, 0, 'p'},
{"self-calibration", no_argument, 0, 's'},
{"free-running", no_argument, 0, 'f'},
{"repeat", no_argument, 0, 'r'},
{"terminate", required_argument, 0, 'x'},
{"offset", no_argument, 0, 'o'},
{"test-tone", required_argument, 0, 't'},
{"no-delay", no_argument, 0, 'n'},
{0, 0, 0, 0}
};
while (true) {
/* getopt_long stores the option index here. */
int option_index = 0;
int c = getopt_long (argc, argv, "hp:sfrx:ot:n",
long_options, &option_index);
if (c == -1)
break;
switch (c) {
char * endp;
case 0:
// Code should only get here if a long option was given a non-null
// flag value.
std::cout << "Check code!" << std::endl;
ABORT(-1);
break;
case 'h':
print_usage();
ABORT(-1);
break;
case 'p':
ppm=strtod(optarg,&endp);
if ((optarg==endp)||(*endp!='\0')) {
std::cerr << "Error: could not parse ppm value" << std::endl;
ABORT(-1);
}
break;
case 's':
self_cal=true;
break;
case 'f':
self_cal=false;
break;
case 'r':
repeat=true;
break;
case 'x':
terminate=strtol(optarg,&endp,10);
if ((optarg==endp)||(*endp!='\0')) {
std::cerr << "Error: could not parse termination argument" << std::endl;
ABORT(-1);
}
if (terminate<1) {
std::cerr << "Error: termination parameter must be >= 1" << std::endl;
ABORT(-1);
}
break;
case 'o':
random_offset=true;
break;
case 't':
test_tone=strtod(optarg,&endp);
mode=TONE;
if ((optarg==endp)||(*endp!='\0')) {
std::cerr << "Error: could not parse test tone frequency" << std::endl;
ABORT(-1);
}
break;
case 'n':
no_delay=true;
break;
case '?':
/* getopt_long already printed an error message. */
ABORT(-1);
default:
ABORT(-1);
}
}
// Parse the non-option parameters
unsigned int n_free_args=0;
while (optind<argc) {
// Check for callsign, locator, tx_power
if (n_free_args==0) {
callsign=argv[optind++];
n_free_args++;
continue;
}
if (n_free_args==1) {
locator=argv[optind++];
n_free_args++;
continue;
}
if (n_free_args==2) {
tx_power=argv[optind++];
n_free_args++;
continue;
}
// Must be a frequency
// First see if it is a string.
double parsed_freq;
if (!strcasecmp(argv[optind],"LF")) {
parsed_freq=137500.0;
} else if (!strcasecmp(argv[optind],"LF-15")) {
parsed_freq=137612.5;
} else if (!strcasecmp(argv[optind],"MF")) {
parsed_freq=475700.0;
} else if (!strcasecmp(argv[optind],"MF-15")) {
parsed_freq=475812.5;
} else if (!strcasecmp(argv[optind],"160m")) {
parsed_freq=1838100.0;
} else if (!strcasecmp(argv[optind],"160m-15")) {
parsed_freq=1838212.5;
} else if (!strcasecmp(argv[optind],"80m")) {
parsed_freq=3594100.0;
} else if (!strcasecmp(argv[optind],"60m")) {
parsed_freq=5288700.0;
} else if (!strcasecmp(argv[optind],"40m")) {
parsed_freq=7040100.0;
} else if (!strcasecmp(argv[optind],"30m")) {
parsed_freq=10140200.0;
} else if (!strcasecmp(argv[optind],"20m")) {
parsed_freq=14097100.0;
} else if (!strcasecmp(argv[optind],"17m")) {
parsed_freq=18106100.0;
} else if (!strcasecmp(argv[optind],"15m")) {
parsed_freq=21096100.0;
} else if (!strcasecmp(argv[optind],"12m")) {
parsed_freq=24926100.0;
} else if (!strcasecmp(argv[optind],"10m")) {
parsed_freq=28126100.0;
} else if (!strcasecmp(argv[optind],"6m")) {
parsed_freq=50294500.0;
} else if (!strcasecmp(argv[optind],"4m")) {
parsed_freq=70092500.0;
} else if (!strcasecmp(argv[optind],"2m")) {
parsed_freq=144490500.0;
} else {
// Not a string. See if it can be parsed as a double.
char * endp;
parsed_freq=strtod(argv[optind],&endp);
if ((optarg==endp)||(*endp!='\0')) {
std::cerr << "Error: could not parse transmit frequency: " << argv[optind] << std::endl;
ABORT(-1);
}
}
optind++;
center_freq_set.push_back(parsed_freq);
}
// Convert to uppercase
transform(callsign.begin(),callsign.end(),callsign.begin(),::toupper);
transform(locator.begin(),locator.end(),locator.begin(),::toupper);
// Check consistency among command line options.
if (ppm&&self_cal) {
std::cout << "Warning: ppm value is being ignored!" << std::endl;
ppm=0.0;
}
if (mode==TONE) {
if ((callsign!="")||(locator!="")||(tx_power!="")||(center_freq_set.size()!=0)||random_offset) {
std::cerr << "Warning: callsign, locator, etc. are ignored when generating test tone" << std::endl;
}
random_offset=0;
if (test_tone<=0) {
std::cerr << "Error: test tone frequency must be positive" << std::endl;
ABORT(-1);
}
} else {
if ((callsign=="")||(locator=="")||(tx_power=="")||(center_freq_set.size()==0)) {
std::cerr << "Error: must specify callsign, locator, dBm, and at least one frequency" << std::endl;
std::cerr << "Try: wspr --help" << std::endl;
ABORT(-1);
}
}
// Print a summary of the parsed options
if (mode==WSPR) {
std::cout << "WSPR packet contents:" << std::endl;
std::cout << " Callsign: " << callsign << std::endl;
std::cout << " Locator: " << locator << std::endl;
std::cout << " Power: " << tx_power << " dBm" << std::endl;
std::cout << "Requested TX frequencies:" << std::endl;
std::stringstream temp;
for (unsigned int t=0;t<center_freq_set.size();t++) {
temp << std::setprecision(6) << std::fixed;
temp << " " << center_freq_set[t]/1e6 << " MHz" << std::endl;
}
std::cout << temp.str();
temp.str("");
if (self_cal) {
temp << " NTP will be used to periodically calibrate the transmission frequency" << std::endl;
} else if (ppm) {
temp << " PPM value to be used for all transmissions: " << ppm << std::endl;
}
if (terminate>0) {
temp << " TX will stop after " << terminate << " transmissions." << std::endl;
} else if (repeat) {
temp << " Transmissions will continue forever until stopped with CTRL-C" << std::endl;
}
if (random_offset) {
temp << " A small random frequency offset will be added to all transmissions" << std::endl;
}
if (temp.str().length()) {
std::cout << "Extra options:" << std::endl;
std::cout << temp.str();
}
std::cout << std::endl;
} else {
std::stringstream temp;
temp << std::setprecision(6) << std::fixed << "A test tone will be generated at frequency " << test_tone/1e6 << " MHz" << std::endl;
std::cout << temp.str();
if (self_cal) {
std::cout << "NTP will be used to calibrate the tone frequency" << std::endl;
} else if (ppm) {
std::cout << "PPM value to be used to generate the tone: " << ppm << std::endl;
}
std::cout << std::endl;
}
}
// Call ntp_adjtime() to obtain the latest calibration coefficient.
void update_ppm(
double & ppm
) {
struct timex ntx;
int status;
double ppm_new;
ntx.modes = 0; /* only read */
status = ntp_adjtime(&ntx);
if (status != TIME_OK) {
//cerr << "Error: clock not synchronized" << std::endl;
//return;
}
ppm_new = (double)ntx.freq/(double)(1 << 16); /* frequency scale */
if (abs(ppm_new)>200) {
std::cerr << "Warning: absolute ppm value is greater than 200 and is being ignored!" << std::endl;
} else {
if (ppm!=ppm_new) {
std::cout << " Obtained new ppm value: " << ppm_new << std::endl;
}
ppm=ppm_new;
}
}
/* Return 1 if the difference is negative, otherwise 0. */
// From StackOverflow:
// http://stackoverflow.com/questions/1468596/c-programming-calculate-elapsed-time-in-milliseconds-unix
int timeval_subtract(struct timeval *result, struct timeval *t2, struct timeval *t1) {
long int diff = (t2->tv_usec + 1000000 * t2->tv_sec) - (t1->tv_usec + 1000000 * t1->tv_sec);
result->tv_sec = diff / 1000000;
result->tv_usec = diff % 1000000;
return (diff<0);
}
void timeval_print(struct timeval *tv) {
char buffer[30];
time_t curtime;
//printf("%ld.%06ld", tv->tv_sec, tv->tv_usec);
curtime = tv->tv_sec;
//strftime(buffer, 30, "%m-%d-%Y %T", localtime(&curtime));
strftime(buffer, 30, "UTC %Y-%m-%d %T", gmtime(&curtime));
printf("%s.%03ld", buffer, (tv->tv_usec+500)/1000);
}
// Create the mbox special files and open mbox.
void open_mbox() {
mbox.handle = mbox_open();
if (mbox.handle < 0) {
std::cerr << "Failed to open mailbox." << std::endl;
ABORT(-1);
}
}
// Called when exiting or when a signal is received.
void cleanup() {
disable_clock();
unSetupDMA();
deallocMemPool();
unlink(LOCAL_DEVICE_FILE_NAME);
}
// Called when a signal is received. Automatically calls cleanup().
void cleanupAndExit(int sig) {
std::cerr << "Exiting with error; caught signal: " << sig << std::endl;
cleanup();
ABORT(-1);
}
void setSchedPriority(int priority) {
//In order to get the best timing at a decent queue size, we want the kernel
//to avoid interrupting us for long durations. This is done by giving our
//process a high priority. Note, must run as super-user for this to work.
struct sched_param sp;
sp.sched_priority=priority;
int ret = pthread_setschedparam(pthread_self(), SCHED_FIFO, &sp);
if (ret) {
std::cerr << "Warning: pthread_setschedparam (increase thread priority) returned non-zero: " << ret << std::endl;
}
}
// Create the memory map between virtual memory and the peripheral range
// of physical memory.
void setup_peri_base_virt(
volatile unsigned * & peri_base_virt
) {
int mem_fd;
// open /dev/mem
if ((mem_fd = open("/dev/mem", O_RDWR|O_SYNC) ) < 0) {
std::cerr << "Error: can't open /dev/mem" << std::endl;
ABORT (-1);
}
peri_base_virt = (unsigned *)mmap(
NULL,
0x01000000, //len
PROT_READ|PROT_WRITE,
MAP_SHARED,
mem_fd,
PERI_BASE_PHYS //base
);
if ((long int)peri_base_virt==-1) {
std::cerr << "Error: peri_base_virt mmap error!" << std::endl;
ABORT(-1);
}
close(mem_fd);
}
int main(const int argc, char * const argv[]) {
//catch all signals (like ctrl+c, ctrl+z, ...) to ensure DMA is disabled
for (int i = 0; i < 64; i++) {
struct sigaction sa;
memset(&sa, 0, sizeof(sa));
sa.sa_handler = cleanupAndExit;
sigaction(i, &sa, NULL);
}
atexit(cleanup);
setSchedPriority(30);
#ifdef RPI1
std::cout << "Detected Raspberry Pi version 1" << std::endl;
#else
#ifdef RPI23
std::cout << "Detected Raspberry Pi version 2/3" << std::endl;
#else
#error "RPI version macro is not defined"
#endif
#endif
// Initialize the RNG
srand(time(NULL));
// Parse arguments
std::string callsign;
std::string locator;
std::string tx_power;
std::vector <double> center_freq_set;
double ppm;
bool self_cal;
bool repeat;
bool random_offset;
double test_tone;
bool no_delay;
mode_type mode;
int terminate;
parse_commandline(
argc,
argv,
callsign,
locator,
tx_power,
center_freq_set,
ppm,
self_cal,
repeat,
random_offset,
test_tone,
no_delay,
mode,
terminate
);
int nbands=center_freq_set.size();
// Initial configuration
struct PageInfo constPage;
struct PageInfo instrPage;
struct PageInfo instrs[1024];
setup_peri_base_virt(peri_base_virt);
// Set up DMA
open_mbox();
txon();
setupDMA(constPage,instrPage,instrs);
txoff();
if (mode==TONE) {
// Test tone mode...
double wspr_symtime = WSPR_SYMTIME;
double tone_spacing=1.0/wspr_symtime;
std::stringstream temp;
temp << std::setprecision(6) << std::fixed << "Transmitting test tone on frequency " << test_tone/1.0e6 << " MHz" << std::endl;
std::cout << temp.str();
std::cout << "Press CTRL-C to exit!" << std::endl;
txon();
int bufPtr=0;
std::vector <double> dma_table_freq;
// Set to non-zero value to ensure setupDMATab is called at least once.
double ppm_prev=123456;
double center_freq_actual;
while (true) {
if (self_cal) {
update_ppm(ppm);
}
if (ppm!=ppm_prev) {
setupDMATab(test_tone+1.5*tone_spacing,tone_spacing,F_PLLD_CLK*(1-ppm/1e6),dma_table_freq,center_freq_actual,constPage);
//cout << std::setprecision(30) << dma_table_freq[0] << std::endl;
//cout << std::setprecision(30) << dma_table_freq[1] << std::endl;
//cout << std::setprecision(30) << dma_table_freq[2] << std::endl;
//cout << std::setprecision(30) << dma_table_freq[3] << std::endl;
if (center_freq_actual!=test_tone+1.5*tone_spacing) {
std::cout << " Warning: because of hardware limitations, test tone will be transmitted on" << std::endl;
std::stringstream temp;
temp << std::setprecision(6) << std::fixed << " frequency: " << (center_freq_actual-1.5*tone_spacing)/1e6 << " MHz" << std::endl;
std::cout << temp.str();
}
ppm_prev=ppm;
}
txSym(0, center_freq_actual, tone_spacing, 60, dma_table_freq, F_PWM_CLK_INIT, instrs, constPage, bufPtr);
}
// Should never get here...
} else {
// WSPR mode
// Create WSPR symbols
unsigned char symbols[162];
wspr(callsign.c_str(), locator.c_str(), tx_power.c_str(), symbols);
/*
printf("WSPR codeblock: ");
for (int i = 0; i < (signed)(sizeof(symbols)/sizeof(*symbols)); i++) {
if (i) {
std::cout << ",";
}
printf("%d", symbols[i]);
}
printf("\n");
*/
std::cout << "Ready to transmit (setup complete)..." << std::endl;
int band=0;
int n_tx=0;
for(;;) {
// Calculate WSPR parameters for this transmission
double center_freq_desired;
center_freq_desired = center_freq_set[band];
bool wspr15 =
(center_freq_desired > 137600 && center_freq_desired < 137625) || \
(center_freq_desired > 475800 && center_freq_desired < 475825) || \
(center_freq_desired > 1838200 && center_freq_desired < 1838225);
double wspr_symtime = (wspr15) ? 8.0 * WSPR_SYMTIME : WSPR_SYMTIME;
double tone_spacing=1.0/wspr_symtime;
// Add random offset
if ((center_freq_desired!=0)&&random_offset) {
center_freq_desired+=(2.0*rand()/((double)RAND_MAX+1.0)-1.0)*(wspr15?WSPR15_RAND_OFFSET:WSPR_RAND_OFFSET);
}
// Status message before transmission
std::stringstream temp;
temp << std::setprecision(6) << std::fixed;
temp << "Desired center frequency for " << (wspr15?"WSPR-15":"WSPR") << " transmission: "<< center_freq_desired/1e6 << " MHz" << std::endl;
std::cout << temp.str();
// Wait for WSPR transmission window to arrive.
if (no_delay) {
std::cout << " Transmitting immediately (not waiting for WSPR window)" << std::endl;
} else {
std::cout << " Waiting for next WSPR transmission window..." << std::endl;
wait_every((wspr15) ? 15 : 2);
}
// Update crystal calibration information
if (self_cal) {
update_ppm(ppm);
}
// Create the DMA table for this center frequency
std::vector <double> dma_table_freq;
double center_freq_actual;
if (center_freq_desired) {
setupDMATab(center_freq_desired,tone_spacing,F_PLLD_CLK*(1-ppm/1e6),dma_table_freq,center_freq_actual,constPage);
} else {
center_freq_actual=center_freq_desired;
}
// Send the message!
//cout << "TX started!" << std::endl;
if (center_freq_actual){
// Print a status message right before transmission begins.
struct timeval tvBegin, tvEnd, tvDiff;
gettimeofday(&tvBegin, NULL);
std::cout << " TX started at: ";
timeval_print(&tvBegin);
std::cout << std::endl;
struct timeval sym_start;
struct timeval diff;
int bufPtr=0;
txon();
for (int i = 0; i < 162; i++) {
gettimeofday(&sym_start,NULL);
timeval_subtract(&diff, &sym_start, &tvBegin);
double elapsed=diff.tv_sec+diff.tv_usec/1e6;
//elapsed=(i)*wspr_symtime;
double sched_end=(i+1)*wspr_symtime;
//cout << "symbol " << i << " " << wspr_symtime << std::endl;
//cout << sched_end-elapsed << std::endl;
double this_sym=sched_end-elapsed;
this_sym=(this_sym<.2)?.2:this_sym;
this_sym=(this_sym>2*wspr_symtime)?2*wspr_symtime:this_sym;
txSym(symbols[i], center_freq_actual, tone_spacing, sched_end-elapsed, dma_table_freq, F_PWM_CLK_INIT, instrs, constPage, bufPtr);
}
n_tx++;
// Turn transmitter off
txoff();
// End timestamp
gettimeofday(&tvEnd, NULL);
std::cout << " TX ended at: ";
timeval_print(&tvEnd);
timeval_subtract(&tvDiff, &tvEnd, &tvBegin);
printf(" (%ld.%03ld s)\n", tvDiff.tv_sec, (tvDiff.tv_usec+500)/1000);
} else {
std::cout << " Skipping transmission" << std::endl;
usleep(1000000);
}
// Advance to next band
band=(band+1)%nbands;
if ((band==0)&&!repeat) {
break;
}
if ((terminate>0)&&(n_tx>=terminate)) {
break;
}
}
}
return 0;
}