Skip to content

Latest commit

 

History

History
121 lines (93 loc) · 12.1 KB

synchronized实现原理.md

File metadata and controls

121 lines (93 loc) · 12.1 KB

synchronized实现原理

参考深入理解Java并发之synchronized实现原理

synchronized三种应用方式

  • 修饰实例方法;作用于当前实例加锁,进入同步代码块之前要获取当前实例的锁。
  • 修饰静态方法;作用于当前类对象加锁,进入同步代码块之前要获取当前类对象的锁。
  • 修饰代码块;指定加锁对象,对给定对象加锁,进入同步代码块之前要获取给定对象的锁。

synchronized底层语义原理

Java虚拟机中的同步(synchronized)基于进入和退出管程(Monitor)对象实现的。 无论是显式同步(有明确的 monitorenter 和 monitorexit 指令,即同步代码块) 还是隐式同步(同步方法)都是如此。

JAVA在对象中存在三个区域:对象头,实例数据和对其填充。 锁就存放在对象的头部的Mark Word数据结构中。 其中包括重量锁,轻量级锁和偏向锁。 重量锁也就是我们通常锁的synchronized锁,每个对象都存在着一个 monitor 与之关联,对象与其 monitor 之间的关系有存在多种实现方式, 如monitor可以与对象一起创建销毁或当线程试图获取对象锁时自动生成,但当一个 monitor 被某个线程持有后,它便处于锁定状态。

在Java虚拟机(HotSpot)中,monitor是由ObjectMonitor实现的,,其主要数据结构如下(位于HotSpot虚拟机源码ObjectMonitor.hpp文件,C++实现的):

ObjectMonitor() {
    _header       = NULL;
    _count        = 0; //记录个数
    _waiters      = 0,
    _recursions   = 0;
    _object       = NULL;
    _owner        = NULL;
    _WaitSet      = NULL; //处于wait状态的线程,会被加入到_WaitSet
    _WaitSetLock  = 0 ;
    _Responsible  = NULL ;
    _succ         = NULL ;
    _cxq          = NULL ;
    FreeNext      = NULL ;
    _EntryList    = NULL ; //处于等待锁block状态的线程,会被加入到该列表
    _SpinFreq     = 0 ;
    _SpinClock    = 0 ;
    OwnerIsThread = 0 ;
  }

ObjectMonitor中有两个队列,_WaitSet 和 _EntryList,用来保存ObjectWaiter对象列表( 每个等待锁的线程都会被封装成ObjectWaiter对象),_owner指向持有ObjectMonitor对象的线程,当多个线程同时访问一段同步代码时,首先会进入 _EntryList 集合,当线程获取到对象的monitor 后进入 _Owner 区域并把monitor中的owner变量设置为当前线程同时monitor中的计数器count加1,若线程调用 wait() 方法,将释放当前持有的monitor,owner变量恢复为null,count自减1,同时该线程进入 WaitSe t集合中等待被唤醒。若当前线程执行完毕也将释放monitor(锁)并复位变量的值,以便其他线程进入获取monitor(锁)。如下图所示

图片

由此看来,monitor对象存在于每个Java对象的对象头中(存储的指针的指向),synchronized锁便是通过这种方式获取锁的,也是为什么Java中任意对象可以作为锁的原因,同时也是notify/notifyAll/wait等方法存在于顶级对象Object中的原因

同步语句块的实现使用的是monitorenter 和 monitorexit 指令。 其中monitorenter指令指向同步代码块的开始位置,monitorexit指令则指明同步代码块的结束位置,当执行monitorenter指令时,当前线程将试图获取 objectref(即对象锁) 所对应的 monitor 的持有权,当 objectref 的 monitor 的进入计数器为 0,那线程可以成功取得 monitor,并将计数器值设置为 1,取锁成功。 如果当前线程已经拥有 objectref 的 monitor 的持有权,那它可以重入这个 monitor (关于重入性稍后会分析),重入时计数器的值也会加 1。倘若其他线程已经拥有 objectref 的 monitor 的所有权,那当前线程将被阻塞,直到正在执行线程执行完毕,即monitorexit指令被执行,执行线程将释放 monitor(锁)并设置计数器值为0 ,其他线程将有机会持有 monitor 。 值得注意的是编译器将会确保无论方法通过何种方式完成,方法中调用过的每条 monitorenter 指令都有执行其对应 monitorexit 指令,而无论这个方法是正常结束还是异常结束。为了保证在方法异常完成时 monitorenter 和 monitorexit 指令依然可以正确配对执行,编译器会自动产生一个异常处理器,这个异常处理器声明可处理所有的异常,它的目的就是用来执行 monitorexit 指令。 从字节码中也可以看出多了一个monitorexit指令,它就是异常结束时被执行的释放monitor 的指令。

同步方法时,synchronized修饰的方法并没有monitorenter指令和monitorexit指令,取得代之的确实是ACC_SYNCHRONIZED标识,该标识指明了该方法是一个同步方法,JVM通过该ACC_SYNCHRONIZED访问标志来辨别一个方法是否声明为同步方法,从而执行相应的同步调用。这便是synchronized锁在同步代码块和同步方法上实现的基本原理。

Java早期版本中,synchronized属于重量锁,效率地下。 因为synchronized是依赖于底层的操作系统的Mutux Lock来实现的。 而操作系统线程间的切换时需要从用户态转到内核态,这个状态之间的转换比较花时间, 时间成本相对较高。

庆幸的是java6之后java官方对synchronized做了较大的优化。

Java虚拟机对synchronized的优化

锁的状态总共有四种,无锁状态、偏向锁、轻量级锁和重量级锁。随着锁的竞争,锁可以从偏向锁升级到轻量级锁,再升级的重量级锁,但是锁的升级是单向的,也就是说只能从低到高升级,不会出现锁的降级。

偏向锁

(基于:大多数情况下,锁不仅不存在多进程竞争,而且总是由同一线程获取锁)

偏向锁是Java 6之后加入的新锁,它是一种针对加锁操作的优化手段,经过研究发现,在大多数情况下,锁不仅不存在多线程竞争,而且总是由同一线程多次获得,因此为了减少同一线程获取锁(会涉及到一些CAS操作,耗时)的代价而引入偏向锁。偏向锁的核心思想是,如果一个线程获得了锁,那么锁就进入偏向模式,此时Mark Word 的结构也变为偏向锁结构,当这个线程再次请求锁时,无需再做任何同步操作,即获取锁的过程,这样就省去了大量有关锁申请的操作,从而也就提供程序的性能。所以,对于没有锁竞争的场合,偏向锁有很好的优化效果,毕竟极有可能连续多次是同一个线程申请相同的锁。但是对于锁竞争比较激烈的场合,偏向锁就失效了,因为这样场合极有可能每次申请锁的线程都是不相同的,因此这种场合下不应该使用偏向锁,否则会得不偿失,需要注意的是,偏向锁失败后,并不会立即膨胀为重量级锁,而是先升级为轻量级锁。下面我们接着了解轻量级锁

轻量级锁

(基于:多个线程交替执行代码块,不存在同一时间访问同一锁的场合)

倘若偏向锁失败,虚拟机并不会立即升级为重量级锁,它还会尝试使用一种称为轻量级锁的优化手段(1.6之后加入的),此时Mark Word 的结构也变为轻量级锁的结构。轻量级锁能够提升程序性能的依据是“对绝大部分的锁,在整个同步周期内都不存在竞争”,注意这是经验数据。需要了解的是,轻量级锁所适应的场景是线程交替执行同步块的场合,如果存在同一时间访问同一锁的场合,就会导致轻量级锁膨胀为重量级锁。

自旋锁

(基于:大多数情况下,线程持有锁的时间不会太长,自旋锁会假设在不久将来,当前的线程可以获得锁)

轻量级锁失败后,虚拟机为了避免线程真实地在操作系统层面挂起,还会进行一项称为自旋锁的优化手段。这是基于在大多数情况下,线程持有锁的时间都不会太长,如果直接挂起操作系统层面的线程可能会得不偿失,毕竟操作系统实现线程之间的切换时需要从用户态转换到核心态,这个状态之间的转换需要相对比较长的时间,时间成本相对较高,因此自旋锁会假设在不久将来,当前的线程可以获得锁,因此虚拟机会让当前想要获取锁的线程做几个空循环(这也是称为自旋的原因),一般不会太久,可能是50个循环或100循环,在经过若干次循环后,如果得到锁,就顺利进入临界区。如果还不能获得锁,那就会将线程在操作系统层面挂起,这就是自旋锁的优化方式,这种方式确实也是可以提升效率的。最后没办法也就只能升级为重量级锁了。

锁消除

(基于:锁如果根本没有用,直接将锁清除) 消除锁是虚拟机另外一种锁的优化,这种优化更彻底,Java虚拟机在JIT编译时(可以简单理解为当某段代码即将第一次被执行时进行编译,又称即时编译),通过对运行上下文的扫描,去除不可能存在共享资源竞争的锁,通过这种方式消除没有必要的锁,可以节省毫无意义的请求锁时间,如下StringBuffer的append是一个同步方法,但是在add方法中的StringBuffer属于一个局部变量,并且不会被其他线程所使用,因此StringBuffer不可能存在共享资源竞争的情景,JVM会自动将其锁消除。

关于synchronized需要注意的点

synchronized的可重入性

从互斥锁的设计上来说,当一个线程试图操作一个由其他线程持有的对象锁的临界资源时,将会处于阻塞状态,但当一个线程再次请求自己持有对象锁的临界资源时,这种情况属于重入锁,请求将会成功,在java中synchronized是基于原子性的内部锁机制,是可重入的,因此在一个线程调用synchronized方法的同时在其方法体内部调用该对象另一个synchronized方法,也就是说一个线程得到一个对象锁后再次请求该对象锁,是允许的,这就是synchronized的可重入性。

线程中断和synchronized

线程中断

  • 当线程处于阻塞状态或者试图执行一个阻塞状态的时候,我们可以使用实例方法interrupt()进行线程中断,执行中断操作后将会抛出interruptException异常(该异常必须捕捉无法向外抛出)并将中断状态复位。
  • 当线程处于运行状态时,我们也可调用实例方法interrupt()进行线程中断,但同时必须手动判断中断状态,并编写中断线程的代码。
public void run(){
    try {
        //判断当前线程是否已中断,注意interrupted方法是静态的,执行后会对中断状态进行复位
        while (!Thread.interrupted()) {
            TimeUnit.SECONDS.sleep(2);
        }
    } catch (InterruptedException e) {

    }
}

线程中断和synchronized

事实上线程的中断操作对于正在等待获取的锁对象的synchronized方法或者代码块并不起作用,也就是对于synchronized来说,如果一个线程在等待锁,那么结果只有两种,要么它获得这把锁继续执行,要么它就保存等待,即使调用中断线程的方法,也不会生效。

等待唤醒机制和synchronized

所谓等待唤醒机制本篇主要指的是notify/notifyAll和wait方法,在使用这3个方法时,必须处于synchronized代码块或者synchronized方法中,否则就会抛出IllegalMonitorStateException异常,这是因为调用这几个方法前必须拿到当前对象的监视器monitor对象,也就是说notify/notifyAll和wait方法依赖于monitor对象,在前面的分析中,我们知道monitor 存在于对象头的Mark Word 中(存储monitor引用指针),而synchronized关键字可以获取 monitor ,这也就是为什么notify/notifyAll和wait方法必须在synchronized代码块或者synchronized方法调用的原因。

synchronized (obj) {
   obj.wait();
   obj.notify();
   obj.notifyAll();
}