Skip to content

Latest commit

 

History

History

irda4

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 

\mainpage Main Page


IrDA 4 click

IrDA 4 Click is a compact add-on board that provides a cost-effective solution for sending and receiving IR serial data. This board features the TFBS4650, an infrared transceiver from Vishay Semiconductors. The transceiver includes a PIN photodiode, an infrared emitter, and a low-power integral circuit and complies with the IrDA physical layer specification.

click Product page


Click library

  • Author : Stefan Ilic
  • Date : Apr 2023.
  • Type : UART type

Software Support

We provide a library for the IrDA 4 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for IrDA 4 Click driver.

Standard key functions :

  • irda4_cfg_setup Config Object Initialization function.
void irda4_cfg_setup ( irda4_cfg_t *cfg );
  • irda4_init Initialization function.
err_t irda4_init ( irda4_t *ctx, irda4_cfg_t *cfg );

Example key functions :

  • irda4_generic_write IrDA 4 data writing function.
err_t irda4_generic_write ( irda4_t *ctx, uint8_t *data_in, uint16_t len );
  • irda4_generic_read IrDA 4 data reading function.
err_t irda4_generic_read ( irda4_t *ctx, uint8_t *data_out, uint16_t len );
  • irda_hw_reset IrDA 4 hardware reset function.
void irda_hw_reset ( irda4_t *ctx );

Example Description

This example demonstrates the use of IrDA 4 click board by processing the incoming data and displaying them on the USB UART.

The demo application is composed of two sections :

Application Init

Initializes the driver and disables the transmitter shutdown.

void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    irda4_cfg_t irda4_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    irda4_cfg_setup( &irda4_cfg );
    IRDA4_MAP_MIKROBUS( irda4_cfg, MIKROBUS_1 );
    if ( UART_ERROR == irda4_init( &irda4, &irda4_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    irda4_set_tx_shutdown( &irda4, IRDA4_SHUTDOWN_DISABLED );
    
    log_info( &logger, " Application Task " );
}

Application Task

Demonstrates the use of IrDA 4 clicks which can be used as transmitter or receiver.

  • TRANSMITTER : Device is sending tx_message data.
  • RECEIVER : Device is reading a message that is being transmitted and logs it on the UART terminal.
void application_task ( void ) 
{
#if defined( DEMO_APP_TRANSMITTER )
    for ( uint8_t n_cnt = 0; n_cnt < 8; n_cnt++ )
    {
        irda4_generic_write( &irda4, &tx_message[ n_cnt ], 1 );
        Delay_ms ( 500 );
    }
    log_printf( &logger, "Message sent \r\n" );
#else
    if ( 1 == irda4_generic_read( &irda4, &rx_message, 1 ) )
    {
        log_printf( &logger, "%c", rx_message );
    }
#endif
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.IrDA4

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.