Skip to content

Latest commit

 

History

History

proximity6

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 

\mainpage Main Page


Proximity 6 click

Proximity 6 click is a versatile proximity detection device on a Click board™.

click Product page


Click library

  • Author : MikroE Team
  • Date : Dec 2019.
  • Type : I2C type

Software Support

We provide a library for the Proximity6 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for Proximity6 Click driver.

Standard key functions :

  • proximity6_cfg_setup Config Object Initialization function.
void proximity6_cfg_setup ( proximity6_cfg_t *cfg ); 
  • proximity6_init Initialization function.
err_t proximity6_init ( proximity6_t *ctx, proximity6_cfg_t *cfg );
  • proximity6_default_cfg Click Default Configuration function.
err_t proximity6_default_cfg ( proximity6_t *ctx );

Example key functions :

  • proximity6_read_data Function reads proximity data when one or more data register is updated.
err_t proximity6_read_data( proximity6_t *ctx, proximity6_data_t *axis_out );
  • proximity6_generic_write This function writes data to the desired register.
err_t proximity6_generic_write ( proximity6_t *ctx, uint8_t reg, uint16_t *data_buf, uint8_t len );
  • proximity6_generic_read This function reads data from the desired register.
err_t proximity6_generic_read ( proximity6_t *ctx, uint8_t reg, uint16_t *data_out, uint8_t len );

Examples Description

This application demonstrates the use of Proximity 6 click board by reading and displaying the raw data measurements from 4 photodiode channels.

The demo application is composed of two sections :

Application Init

Initializes the driver and performs the click default configuration.

void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    proximity6_cfg_t proximity6_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    proximity6_cfg_setup( &proximity6_cfg );
    PROXIMITY6_MAP_MIKROBUS( proximity6_cfg, MIKROBUS_1 );
    if ( PROXIMITY6_ERROR == proximity6_init( &proximity6, &proximity6_cfg ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }
    
    if ( PROXIMITY6_ERROR == proximity6_default_cfg ( &proximity6 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }
    
    log_info( &logger, " Application Task " );
}
  

Application Task

Reads the raw data measurements from 4 photodiode channels and displays the results on the USB UART every 200ms approximately.

void application_task ( void )
{
    proximity6_data_t axis_data;
    if ( PROXIMITY6_OK == proximity6_read_data( &proximity6, &axis_data ) )
    {
        log_printf( &logger, " X1: %u\r\n", axis_data.val_x1 );
        log_printf( &logger, " X2: %u\r\n", axis_data.val_x2 );
        log_printf( &logger, " Y1: %u\r\n", axis_data.val_y1 );
        log_printf( &logger, " Y2: %u\r\n\n", axis_data.val_y2 );
        Delay_ms ( 200 );
    }
} 

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Proximity6

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.