Skip to content

Latest commit

 

History

History
39 lines (22 loc) · 2.55 KB

1. A Single Neuron.md

File metadata and controls

39 lines (22 loc) · 2.55 KB

What is Deep Learning?

Deep learning is an approach to machine learning characterized by deep stacks of computations. This depth of computation is what has enabled deep learning models to disentangle the kinds of complex and hierarchical patterns found in the most challenging real-world datasets.

Through their power and scalability neural networks have become the defining model of deep learning. Neural networks are composed of neurons, where each neuron individually performs only a simple computation. The power of a neural network comes instead from the complexity of the connections these neurons can form.

The Linear Unit

So let's begin with the fundamental component of a neural network: the individual neuron. As a diagram, a neuron (or unit) with one input looks like:


The Linear Unit: y=wx+b

The input is x. Its connection to the neuron has a weight which is w. Whenever a value flows through a connection, you multiply the value by the connection's weight. For the input x, what reaches the neuron is w * x. A neural network "learns" by modifying its weights.

The b is a special kind of weight we call the bias. The bias doesn't have any input data associated with it; instead, we put a 1 in the diagram so that the value that reaches the neuron is just b (since 1 * b = b). The bias enables the neuron to modify the output independently of its inputs.

The y is the value the neuron ultimately outputs. To get the output, the neuron sums up all the values it receives through its connections. This neuron's activation is y = w * x + b, or as a formula y=wx+b .

Multiple Inputs

The 80 Cereals dataset has many more features than just 'sugars'. What if we wanted to expand our model to include things like fiber or protein content? That's easy enough. We can just add more input connections to the neuron, one for each additional feature. To find the output, we would multiply each input to its connection weight and then add them all together.


A linear unit with three inputs.

The formula for this neuron would be y=w0x0+w1x1+w2x2+b . A linear unit with two inputs will fit a plane, and a unit with more inputs than that will fit a hyperplane.

Hyperplane

Reference