Skip to content
Find file
Fetching contributors…
Cannot retrieve contributors at this time
264 lines (208 sloc) 7.52 KB
/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
rhoCentralFoam
Description
Density-based compressible flow solver based on central-upwind schemes of
Kurganov and Tadmor
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "basicPsiThermo.H"
#include "turbulenceModel.H"
#include "zeroGradientFvPatchFields.H"
#include "fixedRhoFvPatchScalarField.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
#include "setRootCase.H"
#include "createTime.H"
#include "createMesh.H"
#include "createFields.H"
#include "readThermophysicalProperties.H"
#include "readTimeControls.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#include "readFluxScheme.H"
dimensionedScalar v_zero("v_zero", dimVolume/dimTime, 0.0);
Info<< "\nStarting time loop\n" << endl;
while (runTime.run())
{
// --- upwind interpolation of primitive fields on faces
surfaceScalarField rho_pos
(
fvc::interpolate(rho, pos, "reconstruct(rho)")
);
surfaceScalarField rho_neg
(
fvc::interpolate(rho, neg, "reconstruct(rho)")
);
surfaceVectorField rhoU_pos
(
fvc::interpolate(rhoU, pos, "reconstruct(U)")
);
surfaceVectorField rhoU_neg
(
fvc::interpolate(rhoU, neg, "reconstruct(U)")
);
volScalarField rPsi(1.0/psi);
surfaceScalarField rPsi_pos
(
fvc::interpolate(rPsi, pos, "reconstruct(T)")
);
surfaceScalarField rPsi_neg
(
fvc::interpolate(rPsi, neg, "reconstruct(T)")
);
surfaceScalarField e_pos
(
fvc::interpolate(e, pos, "reconstruct(T)")
);
surfaceScalarField e_neg
(
fvc::interpolate(e, neg, "reconstruct(T)")
);
surfaceVectorField U_pos(rhoU_pos/rho_pos);
surfaceVectorField U_neg(rhoU_neg/rho_neg);
surfaceScalarField p_pos(rho_pos*rPsi_pos);
surfaceScalarField p_neg(rho_neg*rPsi_neg);
surfaceScalarField phiv_pos(U_pos & mesh.Sf());
surfaceScalarField phiv_neg(U_neg & mesh.Sf());
volScalarField c(sqrt(thermo.Cp()/thermo.Cv()*rPsi));
surfaceScalarField cSf_pos
(
fvc::interpolate(c, pos, "reconstruct(T)")*mesh.magSf()
);
surfaceScalarField cSf_neg
(
fvc::interpolate(c, neg, "reconstruct(T)")*mesh.magSf()
);
surfaceScalarField ap
(
max(max(phiv_pos + cSf_pos, phiv_neg + cSf_neg), v_zero)
);
surfaceScalarField am
(
min(min(phiv_pos - cSf_pos, phiv_neg - cSf_neg), v_zero)
);
surfaceScalarField a_pos(ap/(ap - am));
surfaceScalarField amaxSf("amaxSf", max(mag(am), mag(ap)));
surfaceScalarField aSf(am*a_pos);
if (fluxScheme == "Tadmor")
{
aSf = -0.5*amaxSf;
a_pos = 0.5;
}
surfaceScalarField a_neg(1.0 - a_pos);
phiv_pos *= a_pos;
phiv_neg *= a_neg;
surfaceScalarField aphiv_pos(phiv_pos - aSf);
surfaceScalarField aphiv_neg(phiv_neg + aSf);
// Reuse amaxSf for the maximum positive and negative fluxes
// estimated by the central scheme
amaxSf = max(mag(aphiv_pos), mag(aphiv_neg));
#include "compressibleCourantNo.H"
#include "readTimeControls.H"
#include "setDeltaT.H"
runTime++;
Info<< "Time = " << runTime.timeName() << nl << endl;
phi = aphiv_pos*rho_pos + aphiv_neg*rho_neg;
surfaceVectorField phiUp
(
(aphiv_pos*rhoU_pos + aphiv_neg*rhoU_neg)
+ (a_pos*p_pos + a_neg*p_neg)*mesh.Sf()
);
surfaceScalarField phiEp
(
aphiv_pos*(rho_pos*(e_pos + 0.5*magSqr(U_pos)) + p_pos)
+ aphiv_neg*(rho_neg*(e_neg + 0.5*magSqr(U_neg)) + p_neg)
+ aSf*p_pos - aSf*p_neg
);
volScalarField muEff(turbulence->muEff());
volTensorField tauMC("tauMC", muEff*dev2(Foam::T(fvc::grad(U))));
// --- Solve density
solve(fvm::ddt(rho) + fvc::div(phi));
// --- Solve momentum
solve(fvm::ddt(rhoU) + fvc::div(phiUp));
U.dimensionedInternalField() =
rhoU.dimensionedInternalField()
/rho.dimensionedInternalField();
U.correctBoundaryConditions();
rhoU.boundaryField() = rho.boundaryField()*U.boundaryField();
volScalarField rhoBydt(rho/runTime.deltaT());
if (!inviscid)
{
solve
(
fvm::ddt(rho, U) - fvc::ddt(rho, U)
- fvm::laplacian(muEff, U)
- fvc::div(tauMC)
);
rhoU = rho*U;
}
// --- Solve energy
surfaceScalarField sigmaDotU
(
(
fvc::interpolate(muEff)*mesh.magSf()*fvc::snGrad(U)
+ (mesh.Sf() & fvc::interpolate(tauMC))
)
& (a_pos*U_pos + a_neg*U_neg)
);
solve
(
fvm::ddt(rhoE)
+ fvc::div(phiEp)
- fvc::div(sigmaDotU)
);
e = rhoE/rho - 0.5*magSqr(U);
e.correctBoundaryConditions();
thermo.correct();
rhoE.boundaryField() =
rho.boundaryField()*
(
e.boundaryField() + 0.5*magSqr(U.boundaryField())
);
if (!inviscid)
{
volScalarField k("k", thermo.Cp()*muEff/Pr);
solve
(
fvm::ddt(rho, e) - fvc::ddt(rho, e)
- fvm::laplacian(turbulence->alphaEff(), e)
+ fvc::laplacian(turbulence->alpha(), e)
- fvc::laplacian(k, T)
);
thermo.correct();
rhoE = rho*(e + 0.5*magSqr(U));
}
p.dimensionedInternalField() =
rho.dimensionedInternalField()
/psi.dimensionedInternalField();
p.correctBoundaryConditions();
rho.boundaryField() = psi.boundaryField()*p.boundaryField();
turbulence->correct();
runTime.write();
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< nl << endl;
}
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //
Something went wrong with that request. Please try again.