Skip to content

Latest commit

 

History

History
206 lines (138 loc) · 7.47 KB

f_2dmoments.rst

File metadata and controls

206 lines (138 loc) · 7.47 KB

2D moments

Idea

Let f(x,y) be a real valued function at Cartesian location (x,y). The central moments of f(x,y) are defined as

\mu_{pq}=\int_{a_1}^{a_2} \int_{b_1}^{b_2} (x-\bar{x})^p(y-\bar{y})^q f(x,y) dxdy

where \bar{x} and \bar{y} are defined as

\bar{x} = \frac {M_{10}} {M_{00}}

and

\bar{y} = \frac {M_{01}} {M_{00}}.

The 0-th order moment M_{00} of function f(x,y)

M_{00} = \int _{a_1}^{a_2} \int _{b_1}^{b_2} f(x,y) dxdy

represents the total mass of the function f(x,y) and the two 1-st order moments

M_{10} = \int _{a_1}^{a_2} \int _{b_1}^{b_2} x f(x,y) dxdy

and

M_{10} = \int _{a_1}^{a_2} \int _{b_1}^{b_2} y f(x,y) dxdy

represent the center of mass of the image f(x,y). Hu's Uniqueness Theorem states that if f(x,y) is piecewise continuous and has nonzero values only in the finite part of the (x,y) plane, then geometric moments of all orders exist. It can then be shown that the moment set {\mu_{pq}} is uniquely determined by f(x,y) and conversely, f(x,y) is uniquely determined by {\mu_{pq}}. Since an image has finite area, a moment set can be evaluted computationally and used to uniquely describe the information contained in the image.

Raw moments

Considering image pixels p(x,y) as sampled greyscaled values of f(x,y) at discrete locations, the moments introduced above can be approximated by summation, and raw (spatial) moments m_{ij} are defined as

m_{{ij}}=\sum _{x}\sum _{y}x^{i}y^{j}p(x,y)

Spatial moment features are calculated as:

\text{SPAT_MOMENT_00} &=m_{00} \\
\text{SPAT_MOMENT_01} &=m_{01} \\
\text{SPAT_MOMENT_02} &=m_{02} \\
\text{SPAT_MOMENT_03} &=m_{03} \\
\text{SPAT_MOMENT_10} &=m_{10} \\
\text{SPAT_MOMENT_11} &=m_{11} \\
\text{SPAT_MOMENT_12} &=m_{12} \\
\text{SPAT_MOMENT_20} &=m_{20} \\
\text{SPAT_MOMENT_21} &=m_{21} \\
\text{SPAT_MOMENT_30} &=m_{30}

Central moments

A central moment \mu_{ij} is defined as

\mu_{{ij}}=\sum_{{x}}\sum _{{y}}(x-{\bar  {x}})^{i}(y-{\bar  {y}})^{j}p(x,y)

Central moment features are calculated as:

\text{CENTRAL_MOMENT_02} &=\mu_{02} \\
\text{CENTRAL_MOMENT_03} &=\mu_{03} \\
\text{CENTRAL_MOMENT_11} &=\mu_{11} \\
\text{CENTRAL_MOMENT_12} &=\mu_{12} \\
\text{CENTRAL_MOMENT_20} &=\mu_{20} \\
\text{CENTRAL_MOMENT_21} &=\mu_{21} \\
\text{CENTRAL_MOMENT_30} &=\mu_{20} \\

Normalized raw moments

Raw (spatial) moments m_{ij} of a 2-dimensional greyscale image p(x,y) are calculated by

w_{{ij}} = \frac {\mu_{ij}}{\mu_{22}^ {max(i,j)} }

Spatial moment features are calculated as:

\text{NORM_SPAT_MOMENT_00} =w_{00} \\
\text{NORM_SPAT_MOMENT_01} =w_{01} \\
\text{NORM_SPAT_MOMENT_02} =w_{02} \\
\text{NORM_SPAT_MOMENT_03} =w_{03} \\
\text{NORM_SPAT_MOMENT_10} =w_{10} \\
\text{NORM_SPAT_MOMENT_20} =w_{20} \\
\text{NORM_SPAT_MOMENT_30} =w_{30} \\

Normalized central moments

A normalized central moment \eta_{ij} is defined as

\eta_{{ij}}={\frac  {\mu_{{ij}}}{\mu_{{00}}^{{\left(1+{\frac  {i+j}{2}}\right)}}}}\,

where \mu _{{ij}} is central moment.

Normalized central moment features are calculated as:

\text{NORM_CENTRAL_MOMENT_02} &=\eta_{{02}} \\
\text{NORM_CENTRAL_MOMENT_03} &=\eta_{{03}} \\
\text{NORM_CENTRAL_MOMENT_11} &=\eta_{{11}} \\
\text{NORM_CENTRAL_MOMENT_12} &=\eta_{{12}} \\
\text{NORM_CENTRAL_MOMENT_20} &=\eta_{{20}} \\
\text{NORM_CENTRAL_MOMENT_21} &=\eta_{{21}} \\
\text{NORM_CENTRAL_MOMENT_30} &=\eta_{{30}}

Hu moments

Using nonlinear combinations of geometric moments, M.K. Hu derived a set of invariant moments which has the desirable properties of being invariant under image translation, scaling, and rotation. Hu moments HU_M1 through HU_M7 are calculated as

\text{HU_M1} =& \eta_{{20}}+\eta _{{02}} \\
\text{HU_M2} =& (\eta_{{20}}-\eta_{{02}})^{2}+4\eta_{{11}}^{2} \\
\text{HU_M3} =& (\eta_{{30}}-3\eta_{{12}})^{2}+(3\eta_{{21}}-\eta _{{03}})^{2} \\
\text{HU_M4} =& (\eta_{{30}}+\eta_{{12}})^{2}+(\eta_{{21}}+\eta _{{03}})^{2} \\
\text{HU_M5} =& (\eta_{{30}}-3\eta_{{12}})(\eta_{{30}}+\eta_{{12}})[(\eta_{{30}}+\eta_{{12}})^{2}-3(\eta_{{21}}+\eta_{{03}})^{2}]+ \\
&(3\eta_{{21}}-\eta_{{03}})(\eta_{{21}}+\eta_{{03}})[3(\eta_{{30}}+\eta_{{12}})^{2}-(\eta_{{21}}+\eta _{{03}})^{2}] \\
\text{HU_M6} =& (\eta_{{20}}-\eta_{{02}})[(\eta_{{30}}+\eta_{{12}})^{2}-(\eta_{{21}}+\eta_{{03}})^{2}]+4\eta_{{11}}(\eta_{{30}}+\eta_{{12}})(\eta_{{21}}+\eta_{{03}}) \\
\text{HU_M7} =& (3\eta_{{21}}-\eta_{{03}})(\eta_{{30}}+\eta_{{12}})[(\eta_{{30}}+\eta_{{12}})^{2}-3(\eta_{{21}}+\eta_{{03}})^{2}]- \\
&(\eta_{{30}}-3\eta_{{12}})(\eta_{{21}}+\eta_{{03}})[3(\eta_{{30}}+\eta_{{12}})^{2}-(\eta_{{21}}+\eta _{{03}})^{2}]

Weighted raw moments

Let W(x,y) be a 2-dimensional weighted greyscale image such that each pixel of I is weighted with respect to its distance to the nearest contour pixel:

W(x,y) = \frac {p(x,y)} {\min_i d^2(x,y,C_i)}

where C - set of 2-dimensional ROI contour pixels, d^2(.) - Euclidean distance norm. Weighted raw moments w_{Mij} are defined as

w_{Mij}=\sum_{x}\sum _{y}x^{i}y^{j}W(x,y)

Weighted central moments

Weighted central moments w_{\mu ij} are defined as

w_{\mu ij} = \sum_{{x}}\sum_{{y}}(x-{\bar  {x}})^{i}(y-{\bar  {y}})^{j}W(x,y)

Weighted Hu moments

A normalized weighted central moment w_{\eta ij} is defined as

w_{{\eta ij}}={\frac  {w_{{\mu ij}}}{w_{{\mu 00}}^{{\left(1+{\frac  {i+j}{2}}\right)}}}}\,

where w _{{\mu ij}} is weighted central moment. Weighted Hu moments are defined as

\text{WEIGHTED_HU_M1} =& w_{\eta 20}+w_{\eta 02} \\
\text{WEIGHTED_HU_M2} =& (w_{\eta 20}-w_{\eta 02})^{2}+4w_{\eta 11}^{2} \\
\text{WEIGHTED_HU_M3} =& (w_{\eta 30}-3w_{\eta 12})^{2}+(3w_{\eta 21}-w _{\eta 03})^{2} \\
\text{WEIGHTED_HU_M4} =& (w_{\eta 30}+w_{\eta 12})^{2}+(w_{\eta 21}+w _{\eta 03})^{2} \\
\text{ WEIGHTED_HU_M5} =& (w_{\eta 30}-3w_{\eta 12})(w_{\eta 30}+w_{\eta 12})[(w_{\eta 30}+w_{\eta 12})^{2}-3(w_{\eta 21}+ w_{\eta 03})^{2}]+ \\
&(3w_{\eta 21}-w_{\eta 03})(w_{\eta 21}+w_{\eta 03})[3(w_{\eta 30}+w_{\eta 12})^{2}-(w_{\eta 21}+w _{\eta 03})^{2}] \\
\text{WEIGHTED_HU_M6} =& (w_{\eta 20}-w_{\eta 02})[(w_{\eta 30}+w_{\eta 12})^{2}-(w_{\eta 21}+w_{\eta 03})^{2}]+ \\
&4w_{\eta 11}(w_{\eta 30}+w_{\eta 12})(w_{\eta 21}+w_{\eta 03})\\
\text{WEIGHTED_HU_M7} =& (3w_{\eta 21}-w_{\eta 03})(w_{\eta 30}+w_{\eta 12})[(w_{\eta 30}+w_{\eta 12})^{2}-3(w_{\eta 21}+w_{\eta 03})^{2}]- \\
&(w_{\eta 30}-3w_{\eta 12})(w_{\eta 21}+w_{\eta 03})[3(w_{\eta 30}+w_{\eta 12})^{2}-(w_{\eta 21}+w _{\eta 03})^{2}]

References

M.K. Hu. Pattern recognition by moment invariants, proc. IRE 49, 1961, 1428.

M.K. Hu. Visual problem recognition by moment invariant. IRE Trans. Inform. Theory, Vol. IT-8, pp. 179-187, Feb. 1962.

T.H. Reiss. The Revised Fundamental Theorem of Moment Invariants. IEEE Trans. Pattern Anal. Machine Intell., Vol. PAMI-13. No. 8, August 1991. pp. 830-834.