Skip to content

Commit

Permalink
A tool to generate a lookup table to accurately calculate pow_n(10.0,…
Browse files Browse the repository at this point in the history
… $exp).

We need this for floating point formatting in sprintf, and nqp::pow_n is
not always accurate.
  • Loading branch information
nwc10 committed Apr 20, 2021
1 parent 47c9796 commit 895c96d
Showing 1 changed file with 164 additions and 0 deletions.
164 changes: 164 additions & 0 deletions tools/generate-sprintf-pow10-table.raku
@@ -0,0 +1,164 @@
use v6;

# The problem we have is that for floating point formatting, sprintf needs
# accurate powers of 10, and nqp::num_n(1e1, $exp) is a call to the libc pow()
# function, and *that* may not always be accurate, with the result that we
# generate incorrect formatting. pow() is accurate (for all positive powers)
# on the little endian Linux platforms I tested but on ppc64 and sparc64,
# nqp::say(nqp::pow_n(10, 210)) returns 1.0000000000000001e+210
# (which I think is an error of 1 bit in the last place of the mantissa)
# However, MinGW seems to be much worse, with errors of 4 or 5 bits.
#
# The obvious approach would be to implement the algorithm from MoarVM's pow_i,
# but in NQP in nums:
# while (exp) {
# if (exp & 1)
# result *= base;
# exp >>= 1;
# base *= base;
# }
#
# however, *this* doesn't work because floating point rounding errors from
# *some* multiplications happen to propagate, causing higher powers to be
# inaccurate. (and less accurate than the pow() function). Unlike pow, IEEE
# basic arithmetic is defined to be bit-perfect correct, but that definition
# includes rounding, and that can't be avoided.
#
# After some head scratching, it turns out that for all powers of 10, there
# exist *some* smaller powers of 10 that can be multiplied together to calculate
# them, without rounding errors, but not in any pattern that can be expressed
# algorithmicly. However, we can generate a lookup table that stores which
# smaller powers to multiply, and if we ensure that one is always a "small"
# power which we can construct accurately as integers, then we can iterate our
# way to any power of 10.
#
# This code generates and verifies that table. The table is pasted into
# sprintf.nqp, where there is an NQP implementation of pow10()
#
# See https://github.com/MoarVM/MoarVM/pull/1385

use nqp;

# MoarVM decimal parsing is accurate. The platform's pow function might not be:
my @truth = [1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11, 1e12,
1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 1e20, 1e21, 1e22, 1e23,
1e24, 1e25, 1e26, 1e27, 1e28, 1e29, 1e30, 1e31, 1e32, 1e33, 1e34,
1e35, 1e36, 1e37, 1e38, 1e39, 1e40, 1e41, 1e42, 1e43, 1e44, 1e45,
1e46, 1e47, 1e48, 1e49, 1e50, 1e51, 1e52, 1e53, 1e54, 1e55, 1e56,
1e57, 1e58, 1e59, 1e60, 1e61, 1e62, 1e63, 1e64, 1e65, 1e66, 1e67,
1e68, 1e69, 1e70, 1e71, 1e72, 1e73, 1e74, 1e75, 1e76, 1e77, 1e78,
1e79, 1e80, 1e81, 1e82, 1e83, 1e84, 1e85, 1e86, 1e87, 1e88, 1e89,
1e90, 1e91, 1e92, 1e93, 1e94, 1e95, 1e96, 1e97, 1e98, 1e99, 1e100,
1e101, 1e102, 1e103, 1e104, 1e105, 1e106, 1e107, 1e108, 1e109,
1e110, 1e111, 1e112, 1e113, 1e114, 1e115, 1e116, 1e117, 1e118,
1e119, 1e120, 1e121, 1e122, 1e123, 1e124, 1e125, 1e126, 1e127,
1e128, 1e129, 1e130, 1e131, 1e132, 1e133, 1e134, 1e135, 1e136,
1e137, 1e138, 1e139, 1e140, 1e141, 1e142, 1e143, 1e144, 1e145,
1e146, 1e147, 1e148, 1e149, 1e150, 1e151, 1e152, 1e153, 1e154,
1e155, 1e156, 1e157, 1e158, 1e159, 1e160, 1e161, 1e162, 1e163,
1e164, 1e165, 1e166, 1e167, 1e168, 1e169, 1e170, 1e171, 1e172,
1e173, 1e174, 1e175, 1e176, 1e177, 1e178, 1e179, 1e180, 1e181,
1e182, 1e183, 1e184, 1e185, 1e186, 1e187, 1e188, 1e189, 1e190,
1e191, 1e192, 1e193, 1e194, 1e195, 1e196, 1e197, 1e198, 1e199,
1e200, 1e201, 1e202, 1e203, 1e204, 1e205, 1e206, 1e207, 1e208,
1e209, 1e210, 1e211, 1e212, 1e213, 1e214, 1e215, 1e216, 1e217,
1e218, 1e219, 1e220, 1e221, 1e222, 1e223, 1e224, 1e225, 1e226,
1e227, 1e228, 1e229, 1e230, 1e231, 1e232, 1e233, 1e234, 1e235,
1e236, 1e237, 1e238, 1e239, 1e240, 1e241, 1e242, 1e243, 1e244,
1e245, 1e246, 1e247, 1e248, 1e249, 1e250, 1e251, 1e252, 1e253,
1e254, 1e255, 1e256, 1e257, 1e258, 1e259, 1e260, 1e261, 1e262,
1e263, 1e264, 1e265, 1e266, 1e267, 1e268, 1e269, 1e270, 1e271,
1e272, 1e273, 1e274, 1e275, 1e276, 1e277, 1e278, 1e279, 1e280,
1e281, 1e282, 1e283, 1e284, 1e285, 1e286, 1e287, 1e288, 1e289,
1e290, 1e291, 1e292, 1e293, 1e294, 1e295, 1e296, 1e297, 1e298,
1e299, 1e300, 1e301, 1e302, 1e303, 1e304, 1e305, 1e306, 1e307,
1e308];

# First, figure out what pairs of smaller values we can multiply to get each
# power of 10, one of which will between 1e1 and 1e15

my @results;

# 10 ** $hop-max must be exactly representable as a num. So max max would be 22
# (for the mantissa of an IEEE double), but as the code we're building this for
# is doing the calculation in 64 bit integers, it's actually 19.
my $hop-max = 15;
my $pow-max = 308;
for $hop-max + 1 .. $pow-max -> $pow {
my $want = @truth[$pow];
for 1 .. $hop-max -> $hop {
my $from = $pow - $hop;
my $have = @truth[$from] * @truth[$hop];
++@results[$pow]{$hop}
if $have == $want;
}
# say "$pow => " ~ @results[$pow].raku;
}

# Then figure out the fewest multiplies needed to get to each power of 10 in the
# forwards direction.

# each index gets a score (hops)
my @score;
# and an offset to the next value to use (or 0 for finished)
my @offset;

# As these values are in our array of multipliers, set them to "finished":
for 0 .. $hop-max -> $i {
@score[$i] = 0;
@offset[$i] = 0;
}

for $hop-max + 1 .. $pow-max -> $pow {
# I don't think that the order matters if we do this forwards or backwards
# (the scores are identical), but the generated table *looks* more intuitive
# if it favours larger hops.
for (1 .. $hop-max).reverse -> $hop {
next
unless @results[$pow]{$hop};
my $would-score = @score[$pow - $hop] + 1;
next
unless $would-score < (@score[$pow] // 999);
@score[$pow] = $would-score;
@offset[$pow] = $hop;
}
die "No route to generate 10**$pow - \$hop-max is $hop-max - is this too low?"
unless defined @score[$pow];
}


my @pows = [ map { 1e1 ** $_ }, 0 .. $hop-max ];

sub pow10(int $pow) {
return nqp::inf()
if $pow < 0 || $pow > @offset.elems;
my @factors;
my int $i = $pow;
loop {
my $hop = @offset[$i];
if (!$hop) {
my num $result = @pows[$i];
# say $i ~ ": " ~ @factors.raku;
$result *= @pows[$_]
for @factors.reverse;
return $result
}
push @factors, $hop;
$i -= $hop;
}
}

my $errors;
for 0 .. $pow-max -> $pow {
my $have = pow10($pow);
my $want = @truth[$pow];
if ($have != $want) {
++$errors;
say "$pow: $have != $want";
}
}

die "$errors error(s)"
if $errors;

say @offset.raku;

0 comments on commit 895c96d

Please sign in to comment.