-
Notifications
You must be signed in to change notification settings - Fork 0
/
nsga2P0.py
272 lines (209 loc) · 10.4 KB
/
nsga2P0.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
#
# Copyright (c) IEE, University of Luxembourg 2021-2022.
# Created by Fabrizio Pastore, fabrizio.pastore@uni.lu, SNT, 2022.
# Created by Hazem FAHMY, hazem.fahmy@uni.lu, SNT, 2022.
#
import numpy as np
from pymoo.algorithms.genetic_algorithm import GeneticAlgorithm
from pymoo.docs import parse_doc_string
from pymoo.model.individual import Individual
from pymoo.model.survival import Survival
from pymoo.operators.crossover.simulated_binary_crossover import SimulatedBinaryCrossover
from pymoo.operators.mutation.polynomial_mutation import PolynomialMutation
from pymoo.operators.sampling.random_sampling import FloatRandomSampling
from pymoo.operators.selection.tournament_selection import compare, TournamentSelection
from pymoo.util.display import MultiObjectiveDisplay
from pymoo.util.dominator import Dominator
from pymoo.util.misc import find_duplicates, has_feasible
from pymoo.util.nds.non_dominated_sorting import NonDominatedSorting
from pymoo.util.randomized_argsort import randomized_argsort
# ---------------------------------------------------------------------------------------------------------
# Binary Tournament Selection Function
# ---------------------------------------------------------------------------------------------------------
def binary_tournament(pop, P, algorithm, **kwargs):
if P.shape[1] != 2:
raise ValueError("Only implemented for binary tournament!")
tournament_type = algorithm.tournament_type
S = np.full(P.shape[0], np.nan)
for i in range(P.shape[0]):
a, b = P[i, 0], P[i, 1]
# if at least one solution is infeasible
if pop[a].CV > 0.0 or pop[b].CV > 0.0:
S[i] = compare(a, pop[a].CV, b, pop[b].CV, method='smaller_is_better', return_random_if_equal=True)
# both solutions are feasible
else:
if tournament_type == 'comp_by_dom_and_crowding':
rel = Dominator.get_relation(pop[a].F, pop[b].F)
if rel == 1:
S[i] = a
elif rel == -1:
S[i] = b
elif tournament_type == 'comp_by_rank_and_crowding':
S[i] = compare(a, pop[a].get("rank"), b, pop[b].get("rank"),
method='smaller_is_better')
else:
raise Exception("Unknown tournament type.")
# if rank or domination relation didn't make a decision compare by crowding
if np.isnan(S[i]):
S[i] = compare(a, pop[a].get("crowding"), b, pop[b].get("crowding"),
method='larger_is_better', return_random_if_equal=True)
return S[:, None].astype(int, copy=False)
# =========================================================================================================
# Implementation
# =========================================================================================================
class NSGA2P0(GeneticAlgorithm):
def __init__(self,
pop_size=100,
sampling=FloatRandomSampling(),
selection=TournamentSelection(func_comp=binary_tournament),
crossover=SimulatedBinaryCrossover(eta=15, prob=0.9),
mutation=PolynomialMutation(prob=None, eta=20),
eliminate_duplicates=True,
n_offsprings=None,
display=MultiObjectiveDisplay(),
**kwargs):
"""
Parameters
----------
pop_size : {pop_size}
sampling : {sampling}
selection : {selection}
crossover : {crossover}
mutation : {mutation}
eliminate_duplicates : {eliminate_duplicates}
n_offsprings : {n_offsprings}
"""
super().__init__(pop_size=pop_size,
sampling=sampling,
selection=selection,
crossover=crossover,
mutation=mutation,
survival=RankAndCrowdingSurvival(),
eliminate_duplicates=eliminate_duplicates,
n_offsprings=n_offsprings,
display=display,
**kwargs)
self.tournament_type = 'comp_by_dom_and_crowding'
def _set_optimum(self, **kwargs):
if not has_feasible(self.pop):
self.opt = self.pop[[np.argmin(self.pop.get("CV"))]]
else:
self.opt = self.pop[self.pop.get("rank") == 0]
def _initialize(self):
if self.problem.probID == 0:
print("Initalize")
# create the initial population
self.temp = self.initialization.do(self.problem, self.pop_size, algorithm=self)
self.temp.set("n_gen", self.n_gen)
# then evaluate using the objective function
self.evaluator.eval(self.problem, self.temp, algorithm=self)
# then evaluate using the objective function
self.evaluator.eval(self.problem, self.temp, algorithm=self)
if len(self.temp.get("F")[0]) > 1:
mini = min(self.temp.get("F"))[0]
else:
mini = min(self.temp.get("F"))
s = 1
j = 0
list_Temp = [self.temp]
min_F = [mini]
while(min(list_Temp[min_F.index(min(min_F))].get("F"))[0] > s):
print(mini)
self.temp = self.initialization.do(self.problem, self.pop_size, algorithm=self)
self.temp.set("n_gen", self.n_gen)
self.evaluator.eval(self.problem, self.temp, algorithm=self)
list_Temp.append(self.temp)
if len(self.temp.get("F")[0]) > 1:
mini = min(self.temp.get("F"))[0]
else:
mini = min(self.temp.get("F"))
min_F.append(mini)
j += 1
if j > 4:
#s += 0.5
break
print("min_F", min(min_F))
pop = self.problem.previousPop = list_Temp[min_F.index(min(min_F))]
# that call is a dummy survival to set attributes that are necessary for the mating selection
if self.survival:
pop = self.survival.do(self.problem, pop, len(pop), algorithm=self,
n_min_infeas_survive=self.min_infeas_pop_size)
self.pop, self.off = pop, pop
print("initalized")
else:
self.temp = self.initialization.do(self.problem, self.pop_size, algorithm=self)
self.temp.set("n_gen", self.n_gen)
self.evaluator.eval(self.problem, self.temp, algorithm=self)
pop = self.temp
if self.survival:
pop = self.survival.do(self.problem, pop, len(pop), algorithm=self,
n_min_infeas_survive=self.min_infeas_pop_size)
self.pop, self.off = pop, pop
# ---------------------------------------------------------------------------------------------------------
# Survival Selection
# ---------------------------------------------------------------------------------------------------------
class RankAndCrowdingSurvival(Survival):
def __init__(self) -> None:
super().__init__(filter_infeasible=True)
self.nds = NonDominatedSorting()
def _do(self, problem, pop, n_survive, D=None, **kwargs):
# get the objective space values and objects
F = pop.get("F").astype(float, copy=False)
# the final indices of surviving individuals
survivors = []
# do the non-dominated sorting until splitting front
fronts = self.nds.do(F, n_stop_if_ranked=n_survive)
for k, front in enumerate(fronts):
# calculate the crowding distance of the front
crowding_of_front = calc_crowding_distance(F[front, :])
# save rank and crowding in the individual class
for j, i in enumerate(front):
pop[i].set("rank", k)
pop[i].set("crowding", crowding_of_front[j])
# current front sorted by crowding distance if splitting
if len(survivors) + len(front) > n_survive:
I = randomized_argsort(crowding_of_front, order='descending', method='numpy')
I = I[:(n_survive - len(survivors))]
# otherwise take the whole front unsorted
else:
I = np.arange(len(front))
# extend the survivors by all or selected individuals
survivors.extend(front[I])
return pop[survivors]
def calc_crowding_distance(F, filter_out_duplicates=True):
n_points, n_obj = F.shape
if n_points <= 2:
return np.full(n_points, np.inf)
else:
if filter_out_duplicates:
# filter out solutions which are duplicates - duplicates get a zero finally
is_unique = np.where(np.logical_not(find_duplicates(F, epsilon=1e-24)))[0]
else:
# set every point to be unique without checking it
is_unique = np.arange(n_points)
# index the unique points of the array
_F = F[is_unique]
# sort each column and get index
I = np.argsort(_F, axis=0, kind='mergesort')
# sort the objective space values for the whole matrix
_F = _F[I, np.arange(n_obj)]
# calculate the distance from each point to the last and next
dist = np.row_stack([_F, np.full(n_obj, np.inf)]) - np.row_stack([np.full(n_obj, -np.inf), _F])
# calculate the norm for each objective - set to NaN if all values are equal
norm = np.max(_F, axis=0) - np.min(_F, axis=0)
norm[norm == 0] = np.nan
# prepare the distance to last and next vectors
dist_to_last, dist_to_next = dist, np.copy(dist)
dist_to_last, dist_to_next = dist_to_last[:-1] / norm, dist_to_next[1:] / norm
# if we divide by zero because all values in one columns are equal replace by none
dist_to_last[np.isnan(dist_to_last)] = 0.0
dist_to_next[np.isnan(dist_to_next)] = 0.0
# sum up the distance to next and last and norm by objectives - also reorder from sorted list
J = np.argsort(I, axis=0)
_cd = np.sum(dist_to_last[J, np.arange(n_obj)] + dist_to_next[J, np.arange(n_obj)], axis=1) / n_obj
# save the final vector which sets the crowding distance for duplicates to zero to be eliminated
crowding = np.zeros(n_points)
crowding[is_unique] = _cd
# crowding[np.isinf(crowding)] = 1e+14
return crowding
parse_doc_string(NSGA2P0.__init__)