Skip to content

Latest commit

 

History

History
113 lines (81 loc) · 3.82 KB

bin-margcond.md

File metadata and controls

113 lines (81 loc) · 3.82 KB
layout mathjax author affiliation e_mail date title chapter section topic theorem sources proof_id shortcut username
proof
true
Joram Soch
BCCN Berlin
joram.soch@bccn-berlin.de
2022-10-07 14:03:00 -0700
Marginal distribution of a conditional binomial distribution
Probability Distributions
Univariate discrete distributions
Binomial distribution
Conditional binomial
authors year title in pages url
Wikipedia
2022
Binomial distribution
Wikipedia, the free encyclopedia
retrieved on 2022-10-07
P358
bin-margcond
JoramSoch

Theorem: Let $X$ and $Y$ be two random variables where $Y$ is binomially distributed conditional on $X$

$$ \label{eq:Y-X-dist} Y \vert X \sim \mathrm{Bin}(X, q) $$

and $X$ also follows a binomial distribution, but with different success frequency:

$$ \label{eq:X-dist} X \sim \mathrm{Bin}(n, p) ; . $$

Then, the maginal distribution of $Y$ unconditional on $X$ is again a binomial distribution:

$$ \label{eq:Y-dist} Y \sim \mathrm{Bin}(n, pq) ; . $$

Proof: We are interested in the probability that $Y$ equals a number $m$. According to the law of marginal probability or the law of total probability, this probability can be expressed as:

$$ \label{eq:Y-dist-s1} \mathrm{Pr}(Y = m) = \sum_{k=0}^{\infty} \mathrm{Pr}(Y = m \vert X = k) \cdot \mathrm{Pr}(X = k) ; . $$

Since, by definitions \eqref{eq:X-dist} and \eqref{eq:Y-X-dist}, $\mathrm{Pr}(X = k) = 0$ when $k > n$ and $\mathrm{Pr}(Y = m \vert X = k) = 0$ when $k < m$, we have:

$$ \label{eq:Y-dist-s2} \mathrm{Pr}(Y = m) = \sum_{k=m}^{n} \mathrm{Pr}(Y = m \vert X = k) \cdot \mathrm{Pr}(X = k) ; . $$

Now we can take the probability mass function of the binomial distribution and plug it in for the terms in the sum of \eqref{eq:Y-dist-s2} to get:

$$ \label{eq:Y-dist-s3} \mathrm{Pr}(Y = m) = \sum_{k=m}^{n} {k \choose m} , q^m , (1-q)^{k-m} \cdot {n \choose k} , p^k , (1-p)^{n-k} ; . $$

Applying the binomial coefficient identity ${n \choose k} {k \choose m} = {n \choose m} {n-m \choose k-m}$ and rearranging the terms, we have:

$$ \label{eq:Y-dist-s4} \mathrm{Pr}(Y = m) = \sum_{k=m}^{n} {n \choose m} , {n-m \choose k-m} , p^k , q^m , (1-p)^{n-k} , (1-q)^{k-m} ; . $$

Now we partition $p^k = p^m \cdot p^{k-m}$ and pull all terms dependent on $k$ out of the sum:

$$ \label{eq:Y-dist-s5} \begin{split} \mathrm{Pr}(Y = m) &= {n \choose m} , p^m , q^m \sum_{k=m}^{n} {n-m \choose k-m} , p^{k-m} , (1-p)^{n-k} , (1-q)^{k-m} \\ &= {n \choose m} , (p q)^m \sum_{k=m}^{n} {n-m \choose k-m} , \left( p (1-q) \right)^{k-m} , (1-p)^{n-k} ; . \end{split} $$

Then we subsititute $i = k - m$, such that $k = i + m$:

$$ \label{eq:Y-dist-s6} \mathrm{Pr}(Y = m) = {n \choose m} , (p q)^m \sum_{i=0}^{n-m} {n-m \choose i} , \left( p - pq \right)^{i} , (1-p)^{n-m-i} ; . $$

According to the binomial theorem

$$ \label{eq:bin-th} (x+y)^n = \sum_{k=0}^{n} {n \choose k} , x^{n-k} , y^k ; , $$

the sum in equation \eqref{eq:Y-dist-s6} is equal to

$$ \label{eq:Y-dist-sum} \sum_{i=0}^{n-m} {n-m \choose i} , \left( p - pq \right)^{i} , (1-p)^{n-m-i} = \left( (p-pq)+(1-p) \right)^{n-m} ; . $$

Thus, \eqref{eq:Y-dist-s6} develops into

$$ \label{eq:Y-dist-s7} \begin{split} \mathrm{Pr}(Y = m) &= {n \choose m} , (p q)^m (p - pq + 1 - p)^{n-m} \\ &= {n \choose m} , (p q)^m (1 - pq)^{n-m} \end{split} $$

which is the probability mass function of the binomial distribution with parameters $n$ and $pq$, such that

$$ \label{eq:Y-dist-qed} Y \sim \mathrm{Bin}(n, pq) ; . $$