Skip to content

Latest commit

 

History

History
59 lines (43 loc) · 1.58 KB

bin-var.md

File metadata and controls

59 lines (43 loc) · 1.58 KB
layout mathjax author affiliation e_mail date title chapter section topic theorem sources proof_id shortcut username
proof
true
Joram Soch
BCCN Berlin
joram.soch@bccn-berlin.de
2022-01-20 07:19:00 -0800
Variance of the binomial distribution
Probability Distributions
Univariate discrete distributions
Binomial distribution
Variance
authors year title in pages url
Wikipedia
2022
Binomial distribution
Wikipedia, the free encyclopedia
retrieved on 2022-01-20
P302
bin-var
JoramSoch

Theorem: Let $X$ be a random variable following a binomial distribution:

$$ \label{eq:bin} X \sim \mathrm{Bin}(n,p) ; . $$

Then, the variance of $X$ is

$$ \label{eq:bin-var} \mathrm{Var}(X) = n p , (1-p) ; . $$

Proof: By definition, a binomial random variable is the sum of $n$ independent and identical Bernoulli trials with success probability $p$. Therefore, the variance is

$$ \label{eq:bin-var-s1} \mathrm{Var}(X) = \mathrm{Var}(X_1 + \ldots + X_n) $$

and because variances add up under independence, this is equal to

$$ \label{eq:bin-var-s2} \mathrm{Var}(X) = \mathrm{Var}(X_1) + \ldots + \mathrm{Var}(X_n) = \sum_{i=1}^{n} \mathrm{Var}(X_i) ; . $$

With the variance of the Bernoulli distribution, we have:

$$ \label{eq:bin-var-s3} \mathrm{Var}(X) = \sum_{i=1}^{n} p , (1-p) = n p , (1-p) ; . $$