Skip to content

Latest commit

 

History

History
71 lines (54 loc) · 2.83 KB

cfm-exist.md

File metadata and controls

71 lines (54 loc) · 2.83 KB
layout mathjax author affiliation e_mail date title chapter section topic theorem sources proof_id shortcut username
proof
true
Joram Soch
BCCN Berlin
joram.soch@bccn-berlin.de
2021-10-21 10:43:00 -0700
Existence of a corresponding forward model
Statistical Models
Multivariate normal data
Inverse general linear model
Proof of existence
authors year title in pages url doi
Haufe S, Meinecke F, Görgen K, Dähne S, Haynes JD, Blankertz B, Bießmann F
2014
On the interpretation of weight vectors of linear models in multivariate neuroimaging
NeuroImage
vol. 87, pp. 96–110, Appendix B
10.1016/j.neuroimage.2013.10.067
P270
cfm-exist
JoramSoch

Theorem: Let there be observations $Y \in \mathbb{R}^{n \times v}$ and $X \in \mathbb{R}^{n \times p}$ and consider a weight matrix $W = f(Y,X) \in \mathbb{R}^{v \times p}$ predicting $X$ from $Y$:

$$ \label{eq:bda} \hat{X} = Y W ; . $$

Then, there exists a corresponding forward model.

Proof: The corresponding forward model is defined as

$$ \label{eq:cfm} Y = \hat{X} A^\mathrm{T} + E \quad \text{with} \quad \hat{X}^\mathrm{T} E = 0 $$

and the parameters of the corresponding forward model are equal to

$$ \label{eq:cfm-para} A = \Sigma_y W \Sigma_x^{-1} \quad \text{where} \quad \Sigma_x = \hat{X}^\mathrm{T} \hat{X} \quad \text{and} \quad \Sigma_y = Y^\mathrm{T} Y ; . $$


1) Because the columns of $\hat{X}$ are assumed to be linearly independent [by definition of the corresponding forward model](/D/cfm), the matrix $\Sigma_x = \hat{X}^\mathrm{T} \hat{X}$ is invertible, such that $A$ in \eqref{eq:cfm-para} is well-defined.
2) Moreover, the solution for the matrix $A$ satisfies the [constraint of the corresponding forward model](/D/cfm) for predicted $X$ and errors $E$ to be uncorrelated which can be shown as follows:

$$ \label{eq:X-E-0} \begin{split} \hat{X}^\mathrm{T} E &\overset{\eqref{eq:cfm}}{=} \hat{X}^\mathrm{T} \left( Y - \hat{X} A^\mathrm{T} \right) \\ &\overset{\eqref{eq:cfm-para}}{=} \hat{X}^\mathrm{T} \left( Y - \hat{X} , \Sigma_x^{-1} W^\mathrm{T} \Sigma_y \right) \\ &= \hat{X}^\mathrm{T} Y - \hat{X}^\mathrm{T} \hat{X} , \Sigma_x^{-1} W^\mathrm{T} \Sigma_y \\ &\overset{\eqref{eq:cfm-para}}{=} \hat{X}^\mathrm{T} Y - \hat{X}^\mathrm{T} \hat{X} \left( \hat{X}^\mathrm{T} \hat{X} \right)^{-1} W^\mathrm{T} \left( Y^\mathrm{T} Y \right) \\ % &= \hat{X}^\mathrm{T} Y - W^\mathrm{T} \left( Y^\mathrm{T} Y \right) \\ &\overset{\eqref{eq:bda}}{=} (Y W)^\mathrm{T} Y - W^\mathrm{T} \left( Y^\mathrm{T} Y \right) \\ &= W^\mathrm{T} Y^\mathrm{T} Y - W^\mathrm{T} Y^\mathrm{T} Y \\ &= 0 ; . \end{split} $$

This completes the proof.