Skip to content

Latest commit

 

History

History
74 lines (55 loc) · 2.22 KB

dent-inv.md

File metadata and controls

74 lines (55 loc) · 2.22 KB
layout mathjax author affiliation e_mail date title chapter section topic theorem sources proof_id shortcut username
proof
true
Joram Soch
BCCN Berlin
joram.soch@bccn-berlin.de
2020-12-02 08:11:00 -0800
Invariance of the differential entropy under addition of a constant
General Theorems
Information theory
Differential entropy
Invariance under addition
authors year title in pages url
Wikipedia
2020
Differential entropy
Wikipedia, the free encyclopedia
retrieved on 2020-02-12
P199
dent-inv
JoramSoch

Theorem: Let $X$ be a continuous random variable. Then, the differential entropy of $X$ remains constant under addition of a constant:

$$ \label{eq:dent-inv} \mathrm{h}(X + c) = \mathrm{h}(X) ; . $$

Proof: By definition, the differential entropy of $X$ is

$$ \label{eq:X-dent} \mathrm{h}(X) = - \int_{\mathcal{X}} p(x) \log p(x) , \mathrm{d}x $$

where $p(x) = f_X(x)$ is the probability density function of $X$.

Define the mappings between $X$ and $Y = X + c$ as

$$ \label{eq:X-Y} Y = g(X) = X + c \quad \Leftrightarrow \quad X = g^{-1}(Y) = Y - c ; . $$

Note that $g(X)$ is a strictly increasing function, such that the probability density function of $Y$ is

$$ \label{eq:Y-pdf} f_Y(y) = f_X(g^{-1}(y)) , \frac{\mathrm{d}g^{-1}(y)}{\mathrm{d}y} \overset{\eqref{eq:X-Y}}{=} f_X(y-c) ; . $$

Writing down the differential entropy for $Y$, we have:

$$ \label{eq:Y-dent-s1} \begin{split} \mathrm{h}(Y) &= - \int_{\mathcal{Y}} f_Y(y) \log f_Y(y) , \mathrm{d}y \\ &\overset{\eqref{eq:Y-pdf}}{=} - \int_{\mathcal{Y}} f_X(y-c) \log f_X(y-c) , \mathrm{d}y \end{split} $$

Substituting $x = y - c$, such that $y = x + c$, this yields:

$$ \label{eq:Y-dent-s2} \begin{split} \mathrm{h}(Y) &= - \int_{\left\lbrace y-c ,|, y \in {\mathcal{Y}} \right\rbrace} f_X(x+c-c) \log f_X(x+c-c) , \mathrm{d}(x+c) \\ &= - \int_{\mathcal{X}} f_X(x) \log f_X(x) , \mathrm{d}x \\ &\overset{\eqref{eq:X-dent}}{=} \mathrm{h}(X) ; . \end{split} $$