Skip to content

Latest commit

 

History

History
74 lines (53 loc) · 2.49 KB

lfe-lme.md

File metadata and controls

74 lines (53 loc) · 2.49 KB
layout mathjax author affiliation e_mail date title chapter section topic theorem sources proof_id shortcut username
proof
true
Joram Soch
BCCN Berlin
joram.soch@bccn-berlin.de
2020-02-27 13:16:00 -0800
Log family evidences in terms of log model evidences
Model Selection
Bayesian model selection
Family evidence
Calculation from log model evidences
authors year title in pages url doi
Soch J, Allefeld C
2018
MACS – a new SPM toolbox for model assessment, comparison and selection
Journal of Neuroscience Methods
vol. 306, pp. 19-31, eq. 16
10.1016/j.jneumeth.2018.05.017
P65
lfe-lme
JoramSoch

Theorem: Let $m_1, \ldots, m_M$ be $M$ statistical models with log model evidences $\mathrm{LME}(m_1), \ldots, \mathrm{LME}(m_M)$ and belonging to $F$ mutually exclusive model families $f_1, \ldots, f_F$. Then, the log family evidences are given by:

$$ \label{eq:LFE-LME} \mathrm{LFE}(f_j) = \log \sum_{m_i \in f_j} \left[ \exp[\mathrm{LME}(m_i)] \cdot p(m_i|f_j) \right], \quad j = 1, \ldots, F, $$

where $p(m_i \vert f_j)$ are within-family prior model probabilities.

Proof: Let us consider the (unlogarithmized) family evidence $p(y \vert f_j)$. According to the law of marginal probability, this conditional probability is given by

$$ \label{eq:FE-ME-s1} p(y|f_j) = \sum_{m_i \in f_j} \left[ p(y|m_i,f_j) \cdot p(m_i|f_j) \right] ; . $$

Because model families are mutually exclusive, it holds that $p(y \vert m_i,f_j) = p(y \vert m_i)$, such that

$$ \label{eq:FE-ME-s2} p(y|f_j) = \sum_{m_i \in f_j} \left[ p(y|m_i) \cdot p(m_i|f_j) \right] ; . $$

Logarithmizing transforms the family evidence $p(y \vert f_j)$ into the log family evidence $\mathrm{LFE}(f_j)$:

$$ \label{eq:LFE-LME-s1} \mathrm{LFE}(f_j) = \log \sum_{m_i \in f_j} \left[ p(y|m_i) \cdot p(m_i|f_j) \right] ; . $$

The definition of the log model evidence

$$ \label{eq:LME} \mathrm{LME}(m) = \log p(y|m) $$

can be exponentiated to then read

$$ \label{eq:ME} \exp\left[ \mathrm{LME}(m) \right] = p(y|m) $$

and applying \eqref{eq:ME} to \eqref{eq:LFE-LME-s1}, we finally have:

$$ \label{eq:LFE-LME-s2} \mathrm{LFE}(f_j) = \log \sum_{m_i \in f_j} \left[ \exp[\mathrm{LME}(m_i)] \cdot p(m_i|f_j) \right] ; . $$