Skip to content

Latest commit

 

History

History
59 lines (43 loc) · 1.54 KB

matn-mean.md

File metadata and controls

59 lines (43 loc) · 1.54 KB
layout mathjax author affiliation e_mail date title chapter section topic theorem sources proof_id shortcut username
proof
true
Joram Soch
BCCN Berlin
joram.soch@bccn-berlin.de
2022-09-15 05:05:00 -0700
Mean of the matrix-normal distribution
Probability Distributions
Matrix-variate continuous distributions
Matrix-normal distribution
Mean
authors year title in pages url
Wikipedia
2022
Matrix normal distribution
Wikipedia, the free encyclopedia
retrieved on 2022-09-15
P341
matn-mean
JoramSoch

Theorem: Let $X$ be a random matrix following a matrix-normal distribution:

$$ \label{eq:matn} X \sim \mathcal{MN}(M, U, V) ; . $$

Then, the mean or expected value of $X$ is

$$ \label{eq:matn-mean} \mathrm{E}(X) = M ; . $$

Proof: When $X$ follows a matrix-normal distribution, its vectorized version follows a multivariate normal distribution

$$ \label{eq:matn-mvn} \mathrm{vec}(X) \sim \mathcal{N}(\mathrm{vec}(M), V \otimes U) $$

and the expected value of this multivariate normal distribution is

$$ \label{eq:mvn-mean} \mathrm{E}[\mathrm{vec}(X)] = \mathrm{vec}(M) ; . $$

Since the expected value of a random matrix is calculated element-wise, we can invert the vectorization operator to get:

$$ \label{eq:matn-mean-qed} \mathrm{E}[X] = M ; . $$