Skip to content

Latest commit

 

History

History
61 lines (44 loc) · 2.35 KB

norm-extr.md

File metadata and controls

61 lines (44 loc) · 2.35 KB
layout mathjax author affiliation e_mail date title chapter section topic theorem sources proof_id shortcut username
proof
true
Joram Soch
BCCN Berlin
joram.soch@bccn-berlin.de
2020-08-25 14:11:00 -0700
Extreme points of the probability density function of the normal distribution
Probability Distributions
Univariate continuous distributions
Normal distribution
Extreme points
authors year title in pages url
Wikipedia
2021
Normal distribution
Wikipedia, the free encyclopedia
retrieved on 2021-08-25
P251
norm-extr
JoramSoch

Theorem: The probability density function of the normal distribution with mean $\mu$ and variance $\sigma^2$ has a maximum at $x = \mu$ and no other extrema. Consequently, the normal distribution is a unimodal probability distribution.

Proof: The probability density function of the normal distribution is:

$$ \label{eq:norm-pdf} f_X(x) = \frac{1}{\sqrt{2 \pi} \sigma} \cdot \exp \left[ -\frac{1}{2} \left( \frac{x-\mu}{\sigma} \right)^2 \right] ; . $$

The first two deriatives of this function are:

$$ \label{eq:norm-pdf-der1} f'_X(x) = \frac{\mathrm{d}f_X(x)}{\mathrm{d}x} = \frac{1}{\sqrt{2 \pi} \sigma^3} \cdot (-x + \mu) \cdot \exp \left[ -\frac{1}{2} \left( \frac{x-\mu}{\sigma} \right)^2 \right] $$

$$ \label{eq:norm-pdf-der2} f''_X(x) = \frac{\mathrm{d}^2f_X(x)}{\mathrm{d}x^2} = -\frac{1}{\sqrt{2 \pi} \sigma^3} \cdot \exp \left[ -\frac{1}{2} \left( \frac{x-\mu}{\sigma} \right)^2 \right] + \frac{1}{\sqrt{2 \pi} \sigma^5} \cdot (-x + \mu)^2 \cdot \exp \left[ -\frac{1}{2} \left( \frac{x-\mu}{\sigma} \right)^2 \right] ; . $$

The first derivative is zero, if and only if

$$ \label{eq:norm-pdf-der1-zero} -x + \mu = 0 \quad \Leftrightarrow \quad x = \mu ; . $$

Since the second derivative is negative at this value

$$ \label{eq:norm-pdf-der2-extr} f''_X(\mu) = -\frac{1}{\sqrt{2 \pi} \sigma^3} < 0 ; , $$

there is a maximum at $x = \mu$. From \eqref{eq:norm-pdf-der1}, it can be seen that $f'_X(x)$ is positive for $x &lt; \mu$ and negative for $x &gt; \mu$. Thus, there are no further extrema and $\mathcal{N}(\mu, \sigma^2)$ is unimodal.