Skip to content

Latest commit

 

History

History
57 lines (45 loc) · 1.8 KB

pmf-invfct.md

File metadata and controls

57 lines (45 loc) · 1.8 KB
layout mathjax author affiliation e_mail date title chapter section topic theorem sources proof_id shortcut username
proof
true
Joram Soch
BCCN Berlin
joram.soch@bccn-berlin.de
2021-08-29 22:13:00 -0700
Probability mass function of an invertible function of a random vector
General Theorems
Probability theory
Probability mass function
Probability mass function of invertible function
authors year title in pages url
Taboga, Marco
2017
Functions of random vectors and their distribution
Lectures on probability and mathematical statistics
retrieved on 2021-08-30
P253
pmf-invfct
JoramSoch

Theorem: Let $X$ be an $n \times 1$ random vector of discrete random variables with possible outcomes $\mathcal{X}$ and let $g: ; \mathbb{R}^n \rightarrow \mathbb{R}^n$ be an invertible function on the support of $X$. Then, the probability mass function of $Y = g(X)$ is given by

$$ \label{eq:pmf-invfct} f_Y(y) = \left{ \begin{array}{rl} f_X(g^{-1}(y)) ; , & \text{if} ; y \in \mathcal{Y} \\ 0 ; , & \text{if} ; y \notin \mathcal{Y} \end{array} \right. $$

where $g^{-1}(y)$ is the inverse function of $g(x)$ and $\mathcal{Y}$ is the set of possible outcomes of $Y$:

$$ \label{eq:Y-range} \mathcal{Y} = \left\lbrace y = g(x): x \in \mathcal{X} \right\rbrace ; . $$

Proof: Because an invertible function is a one-to-one mapping, the probability mass function of $Y$ can be derived as follows:

$$ \label{eq:pmf-invfct-qed} \begin{split} f_Y(y) &= \mathrm{Pr}(Y = y) \\ &= \mathrm{Pr}(g(X) = y) \\ &= \mathrm{Pr}(X = g^{-1}(y)) \\ &= f_X(g^{-1}(y)) ; . \end{split} $$