Skip to content

Latest commit

 

History

History
142 lines (107 loc) · 5.59 KB

t-pdf.md

File metadata and controls

142 lines (107 loc) · 5.59 KB
layout mathjax author affiliation e_mail date title chapter section topic theorem sources proof_id shortcut username
proof
true
Joram Soch
BCCN Berlin
joram.soch@bccn-berlin.de
2021-10-12 01:15:00 -0700
Probability density function of the t-distribution
Probability Distributions
Univariate continuous distributions
t-distribution
Probability density function
authors year title in pages url
Computation Empire
2021
Student's t Distribution: Derivation of PDF
YouTube
retrieved on 2021-10-11
P263
t-pdf
JoramSoch

Theorem: Let $T$ be a random variable following a t-distribution:

$$ \label{eq:t} T \sim t(\nu) ; . $$

Then, the probability density function of $T$ is

$$ \label{eq:t-pdf} f_T(t) = \frac{\Gamma\left( \frac{\nu+1}{2} \right)}{\Gamma\left( \frac{\nu}{2} \right) \cdot \sqrt{\nu \pi}} \cdot \left( \frac{t^2}{\nu}+1 \right)^{-\frac{\nu+1}{2}} ; . $$

Proof: A t-distributed random variable is defined as the ratio of a standard normal random variable and the square root of a chi-squared random variable, divided by its degrees of freedom

$$ \label{eq:t-def} X \sim \mathcal{N}(0,1), ; Y \sim \chi^2(\nu) \quad \Rightarrow \quad T = \frac{X}{\sqrt{Y/\nu}} \sim t(\nu) $$

where $X$ and $Y$ are independent of each other.

The probability density function of the standard normal distribution is

$$ \label{eq:snorm-pdf} f_X(x) = \frac{1}{\sqrt{2 \pi}} \cdot e^{-\frac{x^2}{2}} $$

and the probability density function of the chi-squared distribution is

$$ \label{eq:chi2-pdf} f_Y(y) = \frac{1}{\Gamma\left( \frac{\nu}{2} \right) \cdot 2^{\nu/2}} \cdot y^{\frac{\nu}{2}-1} \cdot e^{-\frac{y}{2}} ; . $$

Define the random variables $T$ and $W$ as functions of $X$ and $Y$

$$ \label{eq:TW-XY} \begin{split} T &= X \cdot \sqrt{\frac{\nu}{Y}} \\ W &= Y ; , \end{split} $$

such that the inverse functions $X$ and $Y$ in terms of $T$ and $W$ are

$$ \label{eq:XY-TW} \begin{split} X &= T \cdot \sqrt{\frac{W}{\nu}} \\ Y &= W ; . \end{split} $$

This implies the following Jacobian matrix and determinant:

$$ \label{eq:XY-TW-jac} \begin{split} J &= \left[ \begin{matrix} \frac{\mathrm{d}X}{\mathrm{d}T} & \frac{\mathrm{d}X}{\mathrm{d}W} \\ \frac{\mathrm{d}Y}{\mathrm{d}T} & \frac{\mathrm{d}Y}{\mathrm{d}W} \end{matrix} \right] = \left[ \begin{matrix} \sqrt{\frac{W}{\nu}} & \frac{T}{2 \nu \sqrt{W/\nu}} \\ 0 & 1 \end{matrix} \right] \\ \lvert J \rvert &= \sqrt{\frac{W}{\nu}} ; . \end{split} $$

Because $X$ and $Y$ are independent, the joint density of $X$ and $Y$ is equal to the product of the marginal densities:

$$ \label{eq:f-XY} f_{X,Y}(x,y) = f_X(x) \cdot f_Y(y) ; . $$

With the probability density function of an invertible function, the joint density of $T$ and $W$ can be derived as:

$$ \label{eq:f-TW-s1} f_{T,W}(t,w) = f_{X,Y}(x,y) \cdot \lvert J \rvert ; . $$

Substituting \eqref{eq:XY-TW} into \eqref{eq:snorm-pdf} and \eqref{eq:chi2-pdf}, and then with \eqref{eq:XY-TW-jac} into \eqref{eq:f-TW-s1}, we get:

$$ \label{eq:f-TW-s2} \begin{split} f_{T,W}(t,w) &= f_X\left( t \cdot \sqrt{\frac{w}{\nu}} \right) \cdot f_Y(w) \cdot \lvert J \rvert \\ &= \frac{1}{\sqrt{2 \pi}} \cdot e^{-\frac{\left( t \cdot \sqrt{\frac{w}{\nu}} \right)^2}{2}} \cdot \frac{1}{\Gamma\left( \frac{\nu}{2} \right) \cdot 2^{\nu/2}} \cdot w^{\frac{\nu}{2}-1} \cdot e^{-\frac{w}{2}} \cdot \sqrt{\frac{w}{\nu}} \\ &= \frac{1}{\sqrt{2 \pi \nu} \cdot \Gamma\left( \frac{\nu}{2} \right) \cdot 2^{\nu/2}} \cdot w^{\frac{\nu+1}{2}-1} \cdot e^{-\frac{w}{2} \left( \frac{t^2}{\nu} + 1 \right)} ; . \end{split} $$

The marginal density of $T$ can now be obtained by integrating out $W$:

$$ \label{eq:f-T-s1} \begin{split} f_T(t) &= \int_{0}^{\infty} f_{T,W}(t,w) , \mathrm{d}w \\ &= \frac{1}{\sqrt{2 \pi \nu} \cdot \Gamma\left( \frac{\nu}{2} \right) \cdot 2^{\nu/2}} \cdot \int_{0}^{\infty} w^{\frac{\nu+1}{2}-1} \cdot \mathrm{exp}\left[ -\frac{1}{2}\left( \frac{t^2}{\nu}+1 \right) w \right] , \mathrm{d}w \\ &= \frac{1}{\sqrt{2 \pi \nu} \cdot \Gamma\left( \frac{\nu}{2} \right) \cdot 2^{\nu/2}} \cdot \frac{\Gamma\left( \frac{\nu+1}{2} \right)}{\left[ \frac{1}{2}\left( \frac{t^2}{\nu}+1 \right) \right]^{(\nu+1)/2}} \cdot \int_{0}^{\infty} \frac{\left[ \frac{1}{2}\left( \frac{t^2}{\nu}+1 \right) \right]^{(\nu+1)/2}}{\Gamma\left( \frac{\nu+1}{2} \right)} \cdot w^{\frac{\nu+1}{2}-1} \cdot \mathrm{exp}\left[ -\frac{1}{2}\left( \frac{t^2}{\nu}+1 \right) w \right] , \mathrm{d}w ; . \end{split} $$

At this point, we can recognize that the integrand is equal to the probability density function of a gamma distribution with

$$ \label{eq:f-W-gam-ab} a = \frac{\nu+1}{2} \quad \text{and} \quad b = \frac{1}{2}\left( \frac{t^2}{\nu}+1 \right) ; , $$

and because a probability density function integrates to one, we finally have:

$$ \label{eq:f-T-s2} \begin{split} f_T(t) &= \frac{1}{\sqrt{2 \pi \nu} \cdot \Gamma\left( \frac{\nu}{2} \right) \cdot 2^{\nu/2}} \cdot \frac{\Gamma\left( \frac{\nu+1}{2} \right)}{\left[ \frac{1}{2}\left( \frac{t^2}{\nu}+1 \right) \right]^{(\nu+1)/2}} \\ &= \frac{\Gamma\left( \frac{\nu+1}{2} \right)}{\Gamma\left( \frac{\nu}{2} \right) \cdot \sqrt{\nu \pi}} \cdot \left( \frac{t^2}{\nu}+1 \right)^{-\frac{\nu+1}{2}} ; . \end{split} $$