Skip to content

Latest commit

 

History

History
89 lines (65 loc) · 3.02 KB

tglm-para.md

File metadata and controls

89 lines (65 loc) · 3.02 KB
layout mathjax author affiliation e_mail date title chapter section topic theorem sources proof_id shortcut username
proof
true
Joram Soch
BCCN Berlin
joram.soch@bccn-berlin.de
2021-10-21 08:25:00 -0700
Equivalence of parameter estimates from the transformed general linear model
Statistical Models
Multivariate normal data
Transformed general linear model
Equivalence of parameter estimates
authors year title in pages url doi
Soch J, Allefeld C, Haynes JD
2020
Inverse transformed encoding models – a solution to the problem of correlated trial-by-trial parameter estimates in fMRI decoding
NeuroImage
vol. 209, art. 116449, Appendix A, Theorem 2
10.1016/j.neuroimage.2019.116449
P266
tglm-para
JoramSoch

Theorem: Let there be a general linear model

$$ \label{eq:glm1} Y = X B + E, ; E \sim \mathcal{MN}(0, V, \Sigma) $$

and the transformed general linear model

$$ \label{eq:tglm} \hat{\Gamma} = T B + H, ; H \sim \mathcal{MN}(0, U, \Sigma) $$

which are linked to each other via

$$ \label{eq:glm2-wls} \hat{\Gamma} = ( X_t^\mathrm{T} V^{-1} X_t )^{-1} X_t^\mathrm{T} V^{-1} Y $$

and

$$ \label{eq:X-Xt-T} X = X_t , T ; . $$

Then, the parameter estimates for $B$ from \eqref{eq:glm1} and \eqref{eq:tglm} are equivalent.

Proof: The weighted least squares parameter estimates for \eqref{eq:glm1} are given by

$$ \label{eq:glm1-wls} \hat{B} = (X^\mathrm{T} V^{-1} X)^{-1} X^\mathrm{T} V^{-1} Y $$

and the weighted least squares parameter estimates for \eqref{eq:tglm} are given by

$$ \label{eq:tglm-wls} \hat{B} = (T^\mathrm{T} U^{-1} T)^{-1} T^\mathrm{T} U^{-1} \hat{\Gamma} ; . $$

The covariance across rows for the transformed general linear model is equal to

$$ \label{eq:U} U = ( X_t^\mathrm{T} V^{-1} X_t )^{-1} ; . $$

Applying \eqref{eq:U}, \eqref{eq:X-Xt-T} and \eqref{eq:glm2-wls}, the estimates in \eqref{eq:tglm-wls} can be developed into

$$ \label{eq:tglm-wls-dev} \begin{split} \hat{B} ; &\overset{\eqref{eq:tglm-wls}}{=} ( T^\mathrm{T} , U^{-1} , T )^{-1} , T^\mathrm{T} , U^{-1} , \hat{\Gamma} \\ &\overset{\eqref{eq:U}}{=} ( T^\mathrm{T} \left[ X_t^\mathrm{T} V^{-1} X_t \right] T )^{-1} , T^\mathrm{T} \left[ X_t^\mathrm{T} V^{-1} X_t \right] \hat{\Gamma} \\ &\overset{\eqref{eq:X-Xt-T}}{=} ( X^\mathrm{T} V^{-1} X )^{-1} , T^\mathrm{T} , X_t^\mathrm{T} V^{-1} X_t , \hat{\Gamma} \\ &\overset{\eqref{eq:glm2-wls}}{=} ( X^\mathrm{T} V^{-1} X )^{-1} , T^\mathrm{T} , X_t^\mathrm{T} V^{-1} X_t \left[ ( X_t^\mathrm{T} V^{-1} X_t )^{-1} X_t^\mathrm{T} V^{-1} Y \right] \\ &= ( X^\mathrm{T} V^{-1} X )^{-1} , T^\mathrm{T} , X_t^\mathrm{T} V^{-1} Y \\ &\overset{\eqref{eq:X-Xt-T}}{=} ( X^\mathrm{T} V^{-1} X )^{-1} X^\mathrm{T} V^{-1} Y \end{split} $$

which is equivalent to the estimates in \eqref{eq:glm1-wls}.