Skip to content

Latest commit

 

History

History
77 lines (55 loc) · 2.67 KB

var-tot.md

File metadata and controls

77 lines (55 loc) · 2.67 KB
layout mathjax author affiliation e_mail date title chapter section topic theorem sources proof_id shortcut username
proof
true
Joram Soch
BCCN Berlin
joram.soch@bccn-berlin.de
2021-11-26 03:20:00 -0800
Law of total variance
General Theorems
Probability theory
Variance
Law of total variance
authors year title in pages url
Wikipedia
2021
Law of total variance
Wikipedia, the free encyclopedia
retrieved on 2021-11-26
P292
var-tot
JoramSoch

Theorem: (law of total variance, also called "conditional variance formula") Let $X$ and $Y$ be random variables defined on the same probability space and assume that the variance of $Y$ is finite. Then, the sum of the expectation of the conditional variance and the variance of the conditional expectation of $Y$ given $X$ is equal to the variance of $Y$:

$$ \label{eq:var-tot} \mathrm{Var}(Y) = \mathrm{E}[\mathrm{Var}(Y \vert X)] + \mathrm{Var}[\mathrm{E}(Y \vert X)] ; . $$

Proof: The variance can be decomposed into expected values as follows:

$$ \label{eq:var-tot-s1} \mathrm{Var}(Y) = \mathrm{E}(Y^2) - \mathrm{E}(Y)^2 ; . $$

This can be rearranged into:

$$ \label{eq:var-tot-s2} \mathrm{E}(Y^2) = \mathrm{Var}(Y) + \mathrm{E}(Y)^2 ; . $$

Applying the law of total expectation, we have:

$$ \label{eq:var-tot-s3} \mathrm{E}(Y^2) = \mathrm{E}\left[ \mathrm{Var}(Y \vert X) + \mathrm{E}(Y \vert X)^2 \right] ; . $$

Now subtract the second term from \eqref{eq:var-tot-s1}:

$$ \label{eq:var-tot-s4} \mathrm{E}(Y^2) - \mathrm{E}(Y)^2 = \mathrm{E}\left[ \mathrm{Var}(Y \vert X) + \mathrm{E}(Y \vert X)^2 \right] - \mathrm{E}(Y)^2 ; . $$

Again applying the law of total expectation, we have:

$$ \label{eq:var-tot-s5} \mathrm{E}(Y^2) - \mathrm{E}(Y)^2 = \mathrm{E}\left[ \mathrm{Var}(Y \vert X) + \mathrm{E}(Y \vert X)^2 \right] - \mathrm{E}\left[ \mathrm{E}(Y \vert X) \right]^2 ; . $$

With the linearity of the expected value, the terms can be regrouped to give:

$$ \label{eq:var-tot-s6} \mathrm{E}(Y^2) - \mathrm{E}(Y)^2 = \mathrm{E}\left[ \mathrm{Var}(Y \vert X) \right] + \left( \mathrm{E}\left[ \mathrm{E}(Y \vert X)^2 \right] - \mathrm{E}\left[ \mathrm{E}(Y \vert X) \right]^2 \right) ; . $$

Using the decomposition of variance into expected values, we finally have:

$$ \label{eq:var-tot-s7} \mathrm{Var}(Y) = \mathrm{E}[\mathrm{Var}(Y \vert X)] + \mathrm{Var}[\mathrm{E}(Y \vert X)] ; . $$