-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
DFGCFAPhase.cpp
284 lines (241 loc) · 11.6 KB
/
DFGCFAPhase.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
/*
* Copyright (C) 2011-2018 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "DFGCFAPhase.h"
#if ENABLE(DFG_JIT)
#include "DFGAbstractInterpreterInlines.h"
#include "DFGBlockSet.h"
#include "DFGClobberSet.h"
#include "DFGClobberize.h"
#include "DFGGraph.h"
#include "DFGInPlaceAbstractState.h"
#include "DFGPhase.h"
#include "DFGSafeToExecute.h"
#include "OperandsInlines.h"
#include "JSCInlines.h"
namespace JSC { namespace DFG {
class CFAPhase : public Phase {
public:
CFAPhase(Graph& graph)
: Phase(graph, "control flow analysis")
, m_state(graph)
, m_interpreter(graph, m_state)
, m_verbose(Options::verboseCFA())
{
}
bool run()
{
ASSERT(m_graph.m_form == ThreadedCPS || m_graph.m_form == SSA);
ASSERT(m_graph.m_unificationState == GloballyUnified);
ASSERT(m_graph.m_refCountState == EverythingIsLive);
m_count = 0;
if (m_verbose && !shouldDumpGraphAtEachPhase(m_graph.m_plan.mode())) {
dataLog("Graph before CFA:\n");
m_graph.dump();
}
// This implements a pseudo-worklist-based forward CFA, except that the visit order
// of blocks is the bytecode program order (which is nearly topological), and
// instead of a worklist we just walk all basic blocks checking if cfaShouldRevisit
// is set to true. This is likely to balance the efficiency properties of both
// worklist-based and forward fixpoint-based approaches. Like a worklist-based
// approach, it won't visit code if it's meaningless to do so (nothing changed at
// the head of the block or the predecessors have not been visited). Like a forward
// fixpoint-based approach, it has a high probability of only visiting a block
// after all predecessors have been visited. Only loops will cause this analysis to
// revisit blocks, and the amount of revisiting is proportional to loop depth.
m_state.initialize();
if (m_graph.m_form != SSA) {
if (m_verbose)
dataLog(" Widening state at OSR entry block.\n");
// Widen the abstract values at the block that serves as the must-handle OSR entry.
for (BlockIndex blockIndex = m_graph.numBlocks(); blockIndex--;) {
BasicBlock* block = m_graph.block(blockIndex);
if (!block)
continue;
if (!block->isOSRTarget)
continue;
if (block->bytecodeBegin != m_graph.m_plan.osrEntryBytecodeIndex())
continue;
// We record that the block needs some OSR stuff, but we don't do that yet. We want to
// handle OSR entry data at the right time in order to get the best compile times. If we
// simply injected OSR data right now, then we'd potentially cause a loop body to be
// interpreted with just the constants we feed it, which is more expensive than if we
// interpreted it with non-constant values. If we always injected this data after the
// main pass of CFA ran, then we would potentially spend a bunch of time rerunning CFA
// after convergence. So, we try very hard to inject OSR data for a block when we first
// naturally come to see it - see the m_blocksWithOSR check in performBlockCFA(). This
// way, we:
//
// - Reduce the likelihood of interpreting the block with constants, since we will inject
// the OSR entry constants on top of whatever abstract values we got for that block on
// the first pass. The mix of those two things is likely to not be constant.
//
// - Reduce the total number of CFA reexecutions since we inject the OSR data as part of
// the normal flow of CFA instead of having to do a second fixpoint. We may still have
// to do a second fixpoint if we don't even reach the OSR entry block during the main
// run of CFA, but in that case at least we're not being redundant.
m_blocksWithOSR.add(block);
}
}
do {
m_changed = false;
performForwardCFA();
} while (m_changed);
if (m_graph.m_form != SSA) {
for (BlockIndex blockIndex = m_graph.numBlocks(); blockIndex--;) {
BasicBlock* block = m_graph.block(blockIndex);
if (!block)
continue;
if (m_blocksWithOSR.remove(block))
m_changed |= injectOSR(block);
}
while (m_changed) {
m_changed = false;
performForwardCFA();
}
// Make sure we record the intersection of all proofs that we ever allowed the
// compiler to rely upon.
for (BlockIndex blockIndex = m_graph.numBlocks(); blockIndex--;) {
BasicBlock* block = m_graph.block(blockIndex);
if (!block)
continue;
block->intersectionOfCFAHasVisited &= block->cfaHasVisited;
for (unsigned i = block->intersectionOfPastValuesAtHead.size(); i--;) {
AbstractValue value = block->valuesAtHead[i];
// We need to guarantee that when we do an OSR entry, we validate the incoming
// value as if it could be live past an invalidation point. Otherwise, we may
// OSR enter with a value with the wrong structure, and an InvalidationPoint's
// promise of filtering the structure set of certain values is no longer upheld.
value.m_structure.observeInvalidationPoint();
block->intersectionOfPastValuesAtHead[i].filter(value);
}
}
}
return true;
}
private:
bool injectOSR(BasicBlock* block)
{
if (m_verbose)
dataLog(" Found must-handle block: ", *block, "\n");
// This merges snapshot of stack values while CFA phase want to have proven types and values. This is somewhat tricky.
// But this is OK as long as DFG OSR entry validates the inputs with *proven* AbstracValue values. And it turns out that this
// type widening is critical to navier-stokes. Without it, navier-stokes has more strict constraint on OSR entry and
// fails OSR entry repeatedly.
bool changed = false;
const Operands<Optional<JSValue>>& mustHandleValues = m_graph.m_plan.mustHandleValues();
for (size_t i = mustHandleValues.size(); i--;) {
Operand operand = mustHandleValues.operandForIndex(i);
Optional<JSValue> value = mustHandleValues[i];
if (!value) {
if (m_verbose)
dataLog(" Not live in bytecode: ", operand, "\n");
continue;
}
Node* node = block->variablesAtHead.operand(operand);
if (!node) {
if (m_verbose)
dataLog(" Not live: ", operand, "\n");
continue;
}
if (m_verbose)
dataLog(" Widening ", operand, " with ", value.value(), "\n");
AbstractValue& target = block->valuesAtHead.operand(operand);
changed |= target.mergeOSREntryValue(m_graph, value.value(), node->variableAccessData(), node);
}
if (changed || !block->cfaHasVisited) {
block->cfaShouldRevisit = true;
return true;
}
return false;
}
void performBlockCFA(BasicBlock* block)
{
if (!block)
return;
if (!block->cfaShouldRevisit)
return;
if (m_verbose)
dataLog(" Block ", *block, ":\n");
if (m_blocksWithOSR.remove(block))
injectOSR(block);
m_state.beginBasicBlock(block);
if (m_verbose) {
dataLog(" head vars: ", block->valuesAtHead, "\n");
if (m_graph.m_form == SSA)
dataLog(" head regs: ", nodeValuePairListDump(block->ssa->valuesAtHead), "\n");
}
for (unsigned i = 0; i < block->size(); ++i) {
Node* node = block->at(i);
if (m_verbose) {
dataLogF(" %s @%u: ", Graph::opName(node->op()), node->index());
if (!safeToExecute(m_state, m_graph, node))
dataLog("(UNSAFE) ");
dataLog(m_state.variablesForDebugging(), " ", m_interpreter);
dataLogF("\n");
}
if (!m_interpreter.execute(i)) {
if (m_verbose)
dataLogF(" Expect OSR exit.\n");
break;
}
if (ASSERT_ENABLED
&& m_state.didClobberOrFolded() != writesOverlap(m_graph, node, JSCell_structureID))
DFG_CRASH(m_graph, node, toCString("AI-clobberize disagreement; AI says ", m_state.clobberState(), " while clobberize says ", writeSet(m_graph, node)).data());
}
if (m_verbose) {
dataLogF(" tail regs: ");
m_interpreter.dump(WTF::dataFile());
dataLogF("\n");
}
m_changed |= m_state.endBasicBlock();
if (m_verbose) {
dataLog(" tail vars: ", block->valuesAtTail, "\n");
if (m_graph.m_form == SSA)
dataLog(" head regs: ", nodeValuePairListDump(block->ssa->valuesAtTail), "\n");
}
}
void performForwardCFA()
{
++m_count;
if (m_verbose)
dataLogF("CFA [%u]\n", m_count);
for (BlockIndex blockIndex = 0; blockIndex < m_graph.numBlocks(); ++blockIndex)
performBlockCFA(m_graph.block(blockIndex));
}
private:
InPlaceAbstractState m_state;
AbstractInterpreter<InPlaceAbstractState> m_interpreter;
BlockSet m_blocksWithOSR;
const bool m_verbose;
bool m_changed;
unsigned m_count;
};
bool performCFA(Graph& graph)
{
return runPhase<CFAPhase>(graph);
}
} } // namespace JSC::DFG
#endif // ENABLE(DFG_JIT)