Skip to content
This repository has been archived by the owner before Nov 9, 2022. It is now read-only.
Permalink
master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
// Copyright (c) 2014 Adafruit Industries
// Author: Tony DiCola
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
#include <stdbool.h>
#include <stdlib.h>
#include "pi_dht_read.h"
#include "pi_mmio.h"
// This is the only processor specific magic value, the maximum amount of time to
// spin in a loop before bailing out and considering the read a timeout. This should
// be a high value, but if you're running on a much faster platform than a Raspberry
// Pi or Beaglebone Black then it might need to be increased.
#define DHT_MAXCOUNT 32000
// Number of bit pulses to expect from the DHT. Note that this is 41 because
// the first pulse is a constant 50 microsecond pulse, with 40 pulses to represent
// the data afterwards.
#define DHT_PULSES 41
int pi_dht_read(int type, int pin, float* humidity, float* temperature) {
// Validate humidity and temperature arguments and set them to zero.
if (humidity == NULL || temperature == NULL) {
return DHT_ERROR_ARGUMENT;
}
*temperature = 0.0f;
*humidity = 0.0f;
// Initialize GPIO library.
if (pi_mmio_init() < 0) {
return DHT_ERROR_GPIO;
}
// Store the count that each DHT bit pulse is low and high.
// Make sure array is initialized to start at zero.
int pulseCounts[DHT_PULSES*2] = {0};
// Set pin to output.
pi_mmio_set_output(pin);
// Bump up process priority and change scheduler to try to try to make process more 'real time'.
set_max_priority();
// Set pin high for ~500 milliseconds.
pi_mmio_set_high(pin);
sleep_milliseconds(500);
// The next calls are timing critical and care should be taken
// to ensure no unnecssary work is done below.
// Set pin low for ~20 milliseconds.
pi_mmio_set_low(pin);
busy_wait_milliseconds(20);
// Set pin at input.
pi_mmio_set_input(pin);
// Need a very short delay before reading pins or else value is sometimes still low.
for (volatile int i = 0; i < 500; ++i) {
}
// Wait for DHT to pull pin low.
uint32_t count = 0;
while (pi_mmio_input(pin)) {
if (++count >= DHT_MAXCOUNT) {
// Timeout waiting for response.
set_default_priority();
return DHT_ERROR_TIMEOUT;
}
}
// Record pulse widths for the expected result bits.
for (int i=0; i < DHT_PULSES*2; i+=2) {
// Count how long pin is low and store in pulseCounts[i]
while (!pi_mmio_input(pin)) {
if (++pulseCounts[i] >= DHT_MAXCOUNT) {
// Timeout waiting for response.
set_default_priority();
return DHT_ERROR_TIMEOUT;
}
}
// Count how long pin is high and store in pulseCounts[i+1]
while (pi_mmio_input(pin)) {
if (++pulseCounts[i+1] >= DHT_MAXCOUNT) {
// Timeout waiting for response.
set_default_priority();
return DHT_ERROR_TIMEOUT;
}
}
}
// Done with timing critical code, now interpret the results.
// Drop back to normal priority.
set_default_priority();
// Compute the average low pulse width to use as a 50 microsecond reference threshold.
// Ignore the first two readings because they are a constant 80 microsecond pulse.
uint32_t threshold = 0;
for (int i=2; i < DHT_PULSES*2; i+=2) {
threshold += pulseCounts[i];
}
threshold /= DHT_PULSES-1;
// Interpret each high pulse as a 0 or 1 by comparing it to the 50us reference.
// If the count is less than 50us it must be a ~28us 0 pulse, and if it's higher
// then it must be a ~70us 1 pulse.
uint8_t data[5] = {0};
for (int i=3; i < DHT_PULSES*2; i+=2) {
int index = (i-3)/16;
data[index] <<= 1;
if (pulseCounts[i] >= threshold) {
// One bit for long pulse.
data[index] |= 1;
}
// Else zero bit for short pulse.
}
// Useful debug info:
//printf("Data: 0x%x 0x%x 0x%x 0x%x 0x%x\n", data[0], data[1], data[2], data[3], data[4]);
// Verify checksum of received data.
if (data[4] == ((data[0] + data[1] + data[2] + data[3]) & 0xFF)) {
if (type == DHT11) {
// Get humidity and temp for DHT11 sensor.
*humidity = (float)data[0];
*temperature = (float)data[2];
}
else if (type == DHT22) {
// Calculate humidity and temp for DHT22 sensor.
*humidity = (data[0] * 256 + data[1]) / 10.0f;
*temperature = ((data[2] & 0x7F) * 256 + data[3]) / 10.0f;
if (data[2] & 0x80) {
*temperature *= -1.0f;
}
}
return DHT_SUCCESS;
}
else {
return DHT_ERROR_CHECKSUM;
}
}