Skip to content

Latest commit

 

History

History
61 lines (48 loc) · 1.95 KB

snr.rst

File metadata and controls

61 lines (48 loc) · 1.95 KB

Supernova Remnant Models

Plot the evolution of radius of the SNR:

import numpy as np import matplotlib.pyplot as plt from astropy.units import Quantity from gammapy.astro.source import SNR, SNRTrueloveMcKee

snr_models = [SNR, SNRTrueloveMcKee] densities = Quantity([1, 0.1], 'cm^-3') linestyles = ['-', '--'] colors = ['b', 'g'] t = Quantity(np.logspace(0, 5, 100), 'yr')

for color, density in zip(colors, densities):
for linestyle, snr_model in zip(linestyles, snr_models):

snr = snr_model(n_ISM=density) plt.plot(t.value, snr.radius(t).to('pc').value, label=snr.__class__.__name__ + ' (n_ISM = {0})'.format(density.value), linestyle=linestyle, color=color)

plt.xlabel('time [years]') plt.ylabel('radius [pc]') plt.legend(loc=4) plt.loglog() plt.show()

Plot the evolution of the flux of the SNR above 1 TeV and at 1 kpc distance:

import numpy as np import matplotlib.pyplot as plt from astropy.units import Quantity from gammapy.astro.source import SNR, SNRTrueloveMcKee

densities = Quantity([1, 0.1], 'cm^-3') colors = ['b', 'g']

t = Quantity(np.logspace(0, 5, 100), 'yr')

for color, density in zip(colors, densities):

snr = SNR(n_ISM=density) F = snr.luminosity_tev(t) / (4 * np.pi * Quantity(1, 'kpc') ** 2) plt.plot(t.value, F.to('ph s^-1 cm^-2').value, color=color, label='n_ISM = {0}'.format(density.value)) plt.vlines(snr.sedov_taylor_begin.to('yr').value, 1E-13, 1E-10, linestyle='--', color=color) plt.vlines(snr.sedov_taylor_end.to('yr').value, 1E-13, 1E-10, linestyle='--', color=color)

plt.xlim(1E2, 1E5) plt.ylim(1E-13, 1E-10) plt.xlabel('time [years]') plt.ylabel('flux @ 1kpc [ph s^-1 cm ^-2]') plt.legend(loc=4) plt.loglog() plt.show()