Secret sharing library for the Archistar multi-cloud BFT system.
Java
Switch branches/tags
Latest commit 6bac8d9 Jun 27, 2017 @l0re l0re committed on GitHub Update README.md

README.md

archistar-smc Build Status

Secret sharing library for the Archistar secure multi-cloud Prototype.

Currently implemented algorithms

Performance Numbers

Rough observed performance numbers on a Intel Core i5-4690k, Quad-Core (only Rabin is parallelized though), Java 1.8, 400MB input data split-up into files of Datasize datasize with a 4/3 split. All values are kilobytes/second:

Algorithm                       Datasize     Split-up      Recombine
====================================================================
                   ShamirPSS(4/3)    4kB      53633.6      54439.1
                   ShamirPSS(4/3)  256kB      54818.0      54803.3
                   ShamirPSS(4/3) 4096kB      54606.1      54453.6

                    RabinIDS(4/3)    4kB     119277.8      87111.9
                    RabinIDS(4/3)  256kB     696598.6     128040.0
                    RabinIDS(4/3) 4096kB     830831.6     129129.9

KrawczykCSS(4/3, AESCryptor(CBC))    4kB      57278.7      44295.4
KrawczykCSS(4/3, AESCryptor(CBC))  256kB      99659.4      64748.7
KrawczykCSS(4/3, AESCryptor(CBC)) 4096kB     101764.0      64605.7

KrawczykCSS(4/3, AESGCMCryptor())    4kB      34664.9      27928.5
KrawczykCSS(4/3, AESGCMCryptor())  256kB      56317.9      40586.6
KrawczykCSS(4/3, AESGCMCryptor()) 4096kB      57039.4      40618.8

     KrawczykCSS(4/3, ChaCha20())    4kB      75683.7      52974.7
     KrawczykCSS(4/3, ChaCha20())  256kB     164234.2      82183.0
     KrawczykCSS(4/3, ChaCha20()) 4096kB     172318.0      82414.5

As this is a 3/4 split, this means that you can get roughly 320 MBit/Second network traffic when using a single core.

Basic Introduction to Secret Sharing

Disclaimer: I'm a software developer and this should be seen as an very simplistic introduction to the used algorithms.

The goal of secret sharing is to split up a secret text into multiple parts so that a subset of those parts (called shares) can be used to reconstruct the original secret. The minimum amount of shares needed to reconstruct the secret should be configurable at 'split-up' time, i.e. it should be possible to split up a secret into 8 parts (shares) of which any 5 are needed to reconstruct the original data.

A basic example of Shamir's Secret Sharing should illustrate a possible contruction technique: let's assume that we want to split up '42' (the secret) into 5 parts, 3 of which are needed to reconstruct the original data ('42'). We will be using polynomials: to solve a polynomial of the third degree three points (x|y) are needed. So if we calculate 5 solutions for a polynomial of the third degree and distribute one solution to each participant each, any subset larger than 3 can solve the polynomial (and thus reconstruct the secret).

The generic form of a polynomial of the third degree is:

  y = a_0 * x^0 + a_1 * x^1 + a_2 * x^2

We choose a_1 and a_2 randomly (i.e. 1 and 2) and substitute a_0 with our secret (42), thus creating the following equation:

y = 42 + 1 * x + 2 * x^2

Now we calculate 5 x|y pairs, for example:

| x | y             | y  |
+---+---------------+----+
| 1 | 42 + 1 + 2*1  | 45 |
| 2 | 42 + 2 + 2*4  | 52 |
| 3 | 42 + 3 + 2*9  | 63 |
| 4 | 42 + 4 + 2*16 | 76 |
| 5 | 42 + 5 + 2*25 | 97 |

and distribute one point to each participant. For example User 1 retrieves x=1|y=45, User 2 retrieves x=2,y=52 and so on. No user can tell anything about the original secret.

To reconstruct the secret 3 participant have to exchange their information, in case of User 1, 2 and 3 this would yield the following equations:

 45 = a_0 + a_1 * 1 + a_2 * 1^2
 52 = a_0 + a_1 * 2+ a_2 * 2^2
 63 = a_0 + a_1 * 3 + a_2 * 3^2

We can use sage to solve this solution:

a0, a1, a2 = var("a0 a1 a2")
eq1 =  45 == a0 + a1 + a2
eq2 =  52 == a0 + 2*a1 + 4*a2
eq3 = 63 == a0 + 3*a1 + 9*a2
solve([eq1, eq2, eq3], a0, a1, a2)

-> [[a0 == 42, a1 == 1, a2 == 2]]

Through solving this a_0 can be calculated to be '42'. Voila, secret restored!

How to contribute/hack

  1. fork it
  2. work on your new feature
  3. run the testcases with mvn test
  4. send me a pull request

Citing Archistar

If you find Archistar useful for your work or if you use Archistar in a project, paper, website, etc., please cite the software as

T. Loruenser, A. Happe, D. Slamanig: "ARCHISTAR: Towards Secure and Robust Cloud Based Data Sharing"; Vortrag: Cloud Computing Technology and Science (CloudCom), 2015, Vancouver, Canada; 30.11.2015 - 03.12.2015; in: "CloudCom 2015", IEEE, (2016), S. 371 - 378.