Skip to content

astra-vision/PODA

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

16 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PODA: Prompt-driven Zero-shot Domain Adaptation

Mohammad Fahes1, Tuan-Hung Vu1,2, Andrei Bursuc1,2, Patrick Pérez1,2, Raoul de Charette1
1 Inria, Paris, France.

2 valeo.ai, Paris, France.

TL; DR: PØDA (or PODA) is a simple feature augmentation method for zero-shot domain adaptation guided by a single textual description of the target domain.

Project page: https://astra-vision.github.io/PODA/
Paper: https://arxiv.org/abs/2212.03241

Citation

@InProceedings{fahes2023poda,
  title={P{\O}DA: Prompt-driven Zero-shot Domain Adaptation},
  author={Fahes, Mohammad and Vu, Tuan-Hung and Bursuc, Andrei and P{\'e}rez, Patrick and de Charette, Raoul},
  booktitle={ICCV},
  year={2023}
}

Overview

Overview of PØDA

Method

We propose Prompt-driven Instance Normalization (PIN) to augment feature styles based on "feature/target domain description" similarity

Teaser

Test on unseen youtube video of night driving:
Training dataset: Cityscapes
Prompt: "driving at night"

Table of Content

News

Installation

Dependencies

First create a new conda environment with the required packages:

conda env create --file environment.yml

Then activate environment using:

conda activate poda_env

Datasets

  • CITYSCAPES: Follow the instructions in Cityscapes to download the images and semantic segmentation ground-truths. Please follow the dataset directory structure:

    <CITYSCAPES_DIR>/             % Cityscapes dataset root
    ├── leftImg8bit/              % input image (leftImg8bit_trainvaltest.zip)
    └── gtFine/                   % semantic segmentation labels (gtFine_trainvaltest.zip)
  • ACDC: Download ACDC images and ground truths from ACDC. Please follow the dataset directory structure:

    <ACDC_DIR>/                   % ACDC dataset root
    ├── rbg_anon/                 % input image (rgb_anon_trainvaltest.zip)
    └── gt/                       % semantic segmentation labels (gt_trainval.zip)
  • GTA5: Download GTA5 images and ground truths from GTA5. Please follow the dataset directory structure:

    <GTA5_DIR>/                   % GTA5 dataset root
    ├── images/                   % input image 
    └── labels/                   % semantic segmentation labels

Source models

The source models are available here.

Running PODA

Source training

python3 main.py \
  --dataset <source_dataset> \
  --data_root <path_to_source_dataset> \
  --data_aug \
  --lr 0.1 \
  --crop_size 768 \
  --batch_size 2 \
  --freeze_BB \
  --ckpts_path saved_ckpts

Feature optimization

python3 PIN_aug.py \
--dataset <source_dataset> \
--data_root <path_to_source_dataset> \
--total_it 100 \
--resize_feat \
--domain_desc <target_domain_description>  \
--save_dir <directory_for_saved_statistics>

Model adaptation

python3 main.py \
--dataset <source_dataset> \
--data_root <path_to_source_dataset> \
--ckpt <path_to_source_checkpoint> \
--batch_size 8 \
--lr 0.01 \
--ckpts_path adapted \
--freeze_BB \
--train_aug \
--total_itrs 2000 \ 
--path_mu_sig <path_to_augmented_statistics>

Evaluation

python3 main.py \
--dataset <dataset_name> \
--data_root <dataset_path> \
--ckpt <path_to_tested_model> \
--test_only \
--val_batch_size 1 \
--ACDC_sub <ACDC_subset_if_tested_on_ACDC>   

Inference & Visualization

To test any model on any image and visualize the output, please add the images to predict_test directory and run:

python3 predict.py \
--ckpt <ckpt_path> \
--save_val_results_to <directory_for_saved_output_images>

Qualitative Results

PØDA for uncommon driving situations

PODA for Object Detection

Our feature augmentation is task-agnostic, as it operates on the feature extractor's level. We show some results of PØDA for object detection. The metric is mAP%

License

PØDA is released under the Apache 2.0 license.

Acknowledgement

The code heavily borrows from this implementation of DeepLabv3+, and uses code from CLIP


↑ back to top