Skip to content

Latest commit

 

History

History

minimum-difference-in-sums-after-removal-of-elements

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 

< Previous                  Next >

You are given a 0-indexed integer array nums consisting of 3 * n elements.

You are allowed to remove any subsequence of elements of size exactly n from nums. The remaining 2 * n elements will be divided into two equal parts:

  • The first n elements belonging to the first part and their sum is sumfirst.
  • The next n elements belonging to the second part and their sum is sumsecond.

The difference in sums of the two parts is denoted as sumfirst - sumsecond.

  • For example, if sumfirst = 3 and sumsecond = 2, their difference is 1.
  • Similarly, if sumfirst = 2 and sumsecond = 3, their difference is -1.

Return the minimum difference possible between the sums of the two parts after the removal of n elements.

 

Example 1:

Input: nums = [3,1,2]
Output: -1
Explanation: Here, nums has 3 elements, so n = 1. 
Thus we have to remove 1 element from nums and divide the array into two equal parts.
- If we remove nums[0] = 3, the array will be [1,2]. The difference in sums of the two parts will be 1 - 2 = -1.
- If we remove nums[1] = 1, the array will be [3,2]. The difference in sums of the two parts will be 3 - 2 = 1.
- If we remove nums[2] = 2, the array will be [3,1]. The difference in sums of the two parts will be 3 - 1 = 2.
The minimum difference between sums of the two parts is min(-1,1,2) = -1. 

Example 2:

Input: nums = [7,9,5,8,1,3]
Output: 1
Explanation: Here n = 2. So we must remove 2 elements and divide the remaining array into two parts containing two elements each.
If we remove nums[2] = 5 and nums[3] = 8, the resultant array will be [7,9,1,3]. The difference in sums will be (7+9) - (1+3) = 12.
To obtain the minimum difference, we should remove nums[1] = 9 and nums[4] = 1. The resultant array becomes [7,5,8,3]. The difference in sums of the two parts is (7+5) - (8+3) = 1.
It can be shown that it is not possible to obtain a difference smaller than 1.

 

Constraints:

  • nums.length == 3 * n
  • 1 <= n <= 105
  • 1 <= nums[i] <= 105

Related Topics

[Array] [Dynamic Programming] [Heap (Priority Queue)]

Hints

Hint 1 The lowest possible difference can be obtained when the sum of the first n elements in the resultant array is minimum, and the sum of the next n elements is maximum.
Hint 2 For every index i, think about how you can find the minimum possible sum of n elements with indices lesser or equal to i, if possible.
Hint 3 Similarly, for every index i, try to find the maximum possible sum of n elements with indices greater or equal to i, if possible.
Hint 4 Now for all indices, check if we can consider it as the partitioning index and hence find the answer.