Skip to content

Latest commit

 

History

History

swim-in-rising-water

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 

< Previous                  Next >

You are given an n x n integer matrix grid where each value grid[i][j] represents the elevation at that point (i, j).

The rain starts to fall. At time t, the depth of the water everywhere is t. You can swim from a square to another 4-directionally adjacent square if and only if the elevation of both squares individually are at most t. You can swim infinite distances in zero time. Of course, you must stay within the boundaries of the grid during your swim.

Return the least time until you can reach the bottom right square (n - 1, n - 1) if you start at the top left square (0, 0).

 

Example 1:

Input: grid = [[0,2],[1,3]]
Output: 3
Explanation:
At time 0, you are in grid location (0, 0).
You cannot go anywhere else because 4-directionally adjacent neighbors have a higher elevation than t = 0.
You cannot reach point (1, 1) until time 3.
When the depth of water is 3, we can swim anywhere inside the grid.

Example 2:

Input: grid = [[0,1,2,3,4],[24,23,22,21,5],[12,13,14,15,16],[11,17,18,19,20],[10,9,8,7,6]]
Output: 16
Explanation: The final route is shown.
We need to wait until time 16 so that (0, 0) and (4, 4) are connected.

 

Constraints:

  • n == grid.length
  • n == grid[i].length
  • 1 <= n <= 50
  • 0 <= grid[i][j] < n2
  • Each value grid[i][j] is unique.

Related Topics

[Array] [Binary Search] [Depth-First Search] [Breadth-First Search] [Union Find] [Heap (Priority Queue)] [Matrix]

Similar Questions

  1. Path With Minimum Effort (Medium)

Hints

Hint 1 Use either Dijkstra's, or binary search for the best time T for which you can reach the end if you only step on squares at most T.