Skip to content

Latest commit

 

History

History

number-of-submatrices-that-sum-to-target

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 

< Previous                  Next >

Given a matrix and a target, return the number of non-empty submatrices that sum to target.

A submatrix x1, y1, x2, y2 is the set of all cells matrix[x][y] with x1 <= x <= x2 and y1 <= y <= y2.

Two submatrices (x1, y1, x2, y2) and (x1', y1', x2', y2') are different if they have some coordinate that is different: for example, if x1 != x1'.

 

Example 1:

Input: matrix = [[0,1,0],[1,1,1],[0,1,0]], target = 0
Output: 4
Explanation: The four 1x1 submatrices that only contain 0.

Example 2:

Input: matrix = [[1,-1],[-1,1]], target = 0
Output: 5
Explanation: The two 1x2 submatrices, plus the two 2x1 submatrices, plus the 2x2 submatrix.

Example 3:

Input: matrix = [[904]], target = 0
Output: 0

 

Constraints:

  • 1 <= matrix.length <= 100
  • 1 <= matrix[0].length <= 100
  • -1000 <= matrix[i] <= 1000
  • -10^8 <= target <= 10^8

Related Topics

[Array] [Dynamic Programming] [Sliding Window]

Hints

Hint 1 Using a 2D prefix sum, we can query the sum of any submatrix in O(1) time. Now for each (r1, r2), we can find the largest sum of a submatrix that uses every row in [r1, r2] in linear time using a sliding window.