Skip to content

Latest commit

 

History

History

stone-game-iv

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 

< Previous                  Next >

Alice and Bob take turns playing a game, with Alice starting first.

Initially, there are n stones in a pile.  On each player's turn, that player makes a move consisting of removing any non-zero square number of stones in the pile.

Also, if a player cannot make a move, he/she loses the game.

Given a positive integer n. Return True if and only if Alice wins the game otherwise return False, assuming both players play optimally.

 

Example 1:

Input: n = 1
Output: true
Explanation: Alice can remove 1 stone winning the game because Bob doesn't have any moves.

Example 2:

Input: n = 2
Output: false
Explanation: Alice can only remove 1 stone, after that Bob removes the last one winning the game (2 -> 1 -> 0).

Example 3:

Input: n = 4
Output: true
Explanation: n is already a perfect square, Alice can win with one move, removing 4 stones (4 -> 0).

Example 4:

Input: n = 7
Output: false
Explanation: Alice can't win the game if Bob plays optimally.
If Alice starts removing 4 stones, Bob will remove 1 stone then Alice should remove only 1 stone and finally Bob removes the last one (7 -> 3 -> 2 -> 1 -> 0). 
If Alice starts removing 1 stone, Bob will remove 4 stones then Alice only can remove 1 stone and finally Bob removes the last one (7 -> 6 -> 2 -> 1 -> 0).

Example 5:

Input: n = 17
Output: false
Explanation: Alice can't win the game if Bob plays optimally.

 

Constraints:

  • 1 <= n <= 10^5

Related Topics

[Dynamic Programming]

Hints

Hint 1 Use dynamic programming to keep track of winning and losing states. Given some number of stones, Alice can win if she can force Bob onto a losing state.