-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathMonadicity.hs
389 lines (340 loc) · 10.3 KB
/
Monadicity.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
{-# LANGUAGE CPP #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE UndecidableInstances #-}
module Data.Algebra.Free.Monadicity
( Hom (..)
, unHom
, idHom
, composeHom
, bimapHom
, AlgHom (..)
, unAlgHom
, idAlgHom
, composeAlgHom
, bimapAlgHom
, forget_
, psi
, phi
, unit
, counit
, FreeMAlg (..)
, runFreeMAlg
, fmapF
, returnF
, joinF
, joinF'
, bindF
, MAlg (..)
, algfn
, algFreeMAlg
, returnFreeMAlg
, foldMapFreeMAlg
, foldFreeMAlg
, k
, k_inv_monoid_mempty
, k_inv_monoid_mappend
, k_inv_semigroup_append
, k_inv_pointed
, k_inv_group_invert
) where
import Prelude
import Data.Bifunctor (bimap)
import Data.List.NonEmpty (NonEmpty (..))
import qualified Data.List.NonEmpty as NE
#if __GLASGOW_HASKELL__ >= 910
import qualified Data.Functor as X (unzip)
#else
import qualified Data.List.NonEmpty as X (unzip)
#endif
import Data.Proxy (Proxy (..))
import Data.Kind (Type)
import Data.Group.Free (FreeGroupL)
import qualified Data.Group.Free as FreeGroup
import Data.Algebra.Free
( FreeAlgebra (..)
, AlgebraType0
, AlgebraType
, Proof (..)
, unFoldMapFree
, foldFree
, fmapFree
, joinFree
, bindFree
)
-- |
-- Full subcategory of @Hask@.
data Hom m a b where
Hom :: (AlgebraType0 m a, AlgebraType0 m b) => (a -> b) -> Hom m a b
unHom :: Hom m a b -> a -> b
unHom (Hom f) = f
idHom :: AlgebraType0 m a => Hom m a a
idHom = Hom id
-- |
-- @'Hom'@ is a category.
composeHom :: Hom m b c -> Hom m a b -> Hom m a c
composeHom (Hom f) (Hom g) = Hom (f . g)
bimapHom :: forall m a' a b b'.
( AlgebraType0 m a'
, AlgebraType0 m b'
)
=> (a' -> a)
-> (b -> b')
-> Hom m a b
-> Hom m a' b'
bimapHom f g (Hom ab) = Hom (g . ab . f)
-- |
-- Category of algebras @a@ which fulfil the constraint @AlgebraType m a@.
data AlgHom m a b where
AlgHom :: ( AlgebraType m a
, AlgebraType m b
)
=> (a -> b)
-> AlgHom m a b
unAlgHom :: AlgHom m a b -> a -> b
unAlgHom (AlgHom f) = f
forget_ :: forall m a b . FreeAlgebra m => AlgHom m a b -> Hom m a b
forget_ (AlgHom f) = case forget @m @a of
Proof -> case forget @m @b of
Proof -> Hom f
idAlgHom :: AlgebraType m a => AlgHom m a a
idAlgHom = AlgHom id
-- |
-- @'AlgHom'@ is a category
composeAlgHom :: AlgHom m b c -> AlgHom m a b -> AlgHom m a c
composeAlgHom (AlgHom f) (AlgHom g) = AlgHom (f . g)
bimapAlgHom :: forall m a' a b b'.
( AlgebraType m a'
, AlgebraType m b'
)
=> (a' -> a)
-> (b -> b')
-> AlgHom m a b
-> AlgHom m a' b'
bimapAlgHom f g (AlgHom ab) = AlgHom (g . ab . f)
-- |
-- @ψ :: (...) AlgHom m (m a) d -> Hom m a d@
-- with inverse @'phi'@.
psi :: forall m a d .
( FreeAlgebra m
, AlgebraType0 m a
)
=> AlgHom m (m a) d
-> Hom m a d
psi (AlgHom f) = case forget @m @d of
Proof -> Hom $ unFoldMapFree f
-- |
-- @φ :: (...) => Hom m a d -> AlgHom m (m a) d@
-- with inverse of @'psi'@
phi :: forall m a d .
( FreeAlgebra m
, AlgebraType m d
, AlgebraType0 m a
)
=> Hom m a d
-> AlgHom m (m a) d
phi (Hom f) = case codom @m @a of
Proof -> case forget @m @(m a) of
Proof -> AlgHom $ foldMapFree f
-- |
-- [unit](https://en.wikipedia.org/wiki/Adjoint_functors#Definition_via_counit%E2%80%93unit_adjunction)
-- of the adjunction, which turns out to be @'returnFree'@.
unit :: forall m a .
( FreeAlgebra m
, AlgebraType0 m a
)
=> Hom m a (m a)
unit = case codom @m @a of
Proof -> case forget @m @(m a) of
Proof -> psi (AlgHom id)
-- |
-- [counit](https://en.wikipedia.org/wiki/Adjoint_functors#Definition_via_counit%E2%80%93unit_adjunction)
-- of the adjunction, which boils down to @'foldMapFree' id@.
counit :: forall m d .
( FreeAlgebra m
, AlgebraType m d
)
=> AlgHom m (m d) d
counit = case forget @m @d of
Proof -> phi (Hom id)
-- |
-- The monad associated with the adjunction. Note that it's isomorphic to
-- @'FreeAlgebra' m => m a@.
data FreeMAlg (m :: Type -> Type) (a :: Type) where
FreeMAlg :: (FreeAlgebra m, AlgebraType0 m a) => m a -> FreeMAlg m a
instance Show (m a) => Show (FreeMAlg m a) where
show (FreeMAlg ma) = "FreeMAlg " ++ show ma
instance Eq (m a) => Eq (FreeMAlg m a) where
(FreeMAlg ma) == (FreeMAlg mb) = ma == mb
instance Ord (m a) => Ord (FreeMAlg m a) where
compare (FreeMAlg ma) (FreeMAlg mb) = ma `compare` mb
runFreeMAlg :: FreeMAlg m a -> m a
runFreeMAlg (FreeMAlg ma) = ma
-- |
-- @'FreeMAlg'@ is a functor in the category @Hom m@.
fmapF :: forall m a b .
Hom m a b
-> FreeMAlg m a
-> FreeMAlg m b
fmapF (Hom fn) (FreeMAlg ma) = FreeMAlg $ fmapFree fn ma
-- |
-- unit of the @'FreeMAlg'@ monad (i.e. @return@ in Haskell)
returnF :: forall m a .
( FreeAlgebra m
, AlgebraType0 m a
, AlgebraType0 m (FreeMAlg m a)
)
=> Hom m a (FreeMAlg m a)
returnF = case unit :: Hom m a (m a) of Hom f -> Hom (FreeMAlg . f)
-- |
-- join of the @'FreeMAlg'@ monad
joinF :: forall m a .
( FreeAlgebra m
, AlgebraType0 m a
, AlgebraType0 m (FreeMAlg m a)
, AlgebraType0 m (FreeMAlg m (FreeMAlg m a))
)
=> Hom m (FreeMAlg m (FreeMAlg m a)) (FreeMAlg m a)
joinF = case codom @m @a of
Proof -> case forget @m @(m a) of
Proof -> Hom $ \(FreeMAlg mma) -> FreeMAlg $ joinFree $ fmapFree runFreeMAlg mma
-- |
-- The same as @'joinF'@ but defined the same way as in categor theory text
-- books where newtype wrapers do not show up ;).
joinF' :: forall m a .
( FreeAlgebra m
, AlgebraType0 m a
)
=> Hom m (m (m a)) (m a)
joinF' = case codom @m @a of
Proof -> forget_ counit
-- |
-- bind of the @'FreeMAlg'@ monad
bindF :: forall m a b .
( FreeAlgebra m
, AlgebraType0 m b
)
=> FreeMAlg m a
-> Hom m a (FreeMAlg m b)
-> FreeMAlg m b
bindF (FreeMAlg ma) (Hom f) = case codom @m @a of
Proof -> case forget @m @(m a) of
Proof -> FreeMAlg $ ma `bindFree` (runFreeMAlg . f)
-- |
-- Algebras for a monad @m@
class MAlg m a where
alg :: m a -> a
instance {-# OVERLAPPING #-} MAlg [] [a] where
alg = concat
instance {-# OVERLAPPING #-} MAlg NonEmpty (NonEmpty a) where
alg = NE.fromList . concatMap NE.toList . NE.toList
-- |
-- Wrapping an @MAlg@ inside a monad is a
instance {-# OVERLAPPABLE #-} (Functor m, MAlg m a, MAlg m b) => MAlg m (a, b) where
alg = bimap alg alg . X.unzip
-- |
-- TODO: is this a lawful instance?
instance {-# OVERLAPPABLE #-} (Traversable m, Monad n, MAlg m a) => MAlg m (n a) where
alg mna = alg <$> sequence mna
-- |
-- if @MAlg m a@ holds then @MAlg m (b -> a)@ holds
algfn :: ( FreeAlgebra m
, AlgebraType0 m (b -> a)
, AlgebraType0 m a
, MAlg m a
)
=> m (b -> a)
-> (b -> a)
algfn mbtoa b = alg $ fmapFree ($ b) mbtoa
instance MAlg [] a => MAlg [] (b -> a) where
alg = algfn
instance MAlg NonEmpty a => MAlg NonEmpty (b -> a) where
alg = algfn
-- $FreeMAlg-FreeAlgebra
--
-- @FreeMAlg@ is an instance of @FreeAlgebra@ with @returnFreeMAlg@ and
-- @foldMapFreeMalg@. The only problem with typing this instance is that ghc
-- will not be able to deduce @AlgebraType0 m a@ instance even if we define
-- @
-- type instance AlgebraType0 (FreeMAlg m) a = AlgebraType0 m a
-- @
{--
- instance ( FreeAlgebra m
- , AlgebraType0 m a
- , AlgebraType0 m (FreeMAlg m a)
- ) => MAlg m (FreeMAlg m a) where
- alg ma = case codom @m @a of
- Proof -> case forget @m @(m a) of
- Proof -> FreeMAlg $ joinFree $ fmapFree runFreeMAlg ma
--}
-- So let's just capture it in a function.
algFreeMAlg
:: ( FreeAlgebra m
, AlgebraType0 m a
, AlgebraType0 m (m a)
, AlgebraType0 m (FreeMAlg m a)
)
=> m (FreeMAlg m a)
-> FreeMAlg m a
algFreeMAlg ma = FreeMAlg $ joinFree $ fmapFree runFreeMAlg ma
-- |
-- Unwrapped version of @'returnF'@
returnFreeMAlg
:: ( FreeAlgebra m
, AlgebraType0 m a
)
=> a
-> FreeMAlg m a
returnFreeMAlg = FreeMAlg . returnFree
foldMapFreeMAlg
:: ( AlgebraType0 m a
, AlgebraType0 m d
, MAlg m d
)
=> (a -> d)
-> (FreeMAlg m a -> d)
foldMapFreeMAlg fn (FreeMAlg ma) = alg $ fmapFree fn ma
foldFreeMAlg
:: ( AlgebraType0 m a
, MAlg m a
)
=> FreeMAlg m a -> a
foldFreeMAlg = foldMapFreeMAlg id
-- |
-- The comparison functor from the category of algebras of type @AgelbraType
-- m a@ to the category of @MAlg m a@.
-- A category is monadic iff @k@ is an equivalence of categories.
-- This is true for all categories of algebras which have an @FreeAlgebra m@
-- instance. The inverse is more interesting, since it constructs an instance
-- @AlgebraType m a@ on @a@ out of @m a -> a@. Some examples are given below.
k :: ( FreeAlgebra m
, AlgebraType m a
)
=> Proxy a
-> (m a -> a)
k _ = foldFree
-- |
-- @'mempty'@ deduced from @FreeAlg []@ @MAlg@ instance.
k_inv_monoid_mempty :: MAlg [] a => a
k_inv_monoid_mempty = foldFreeMAlg (FreeMAlg [])
-- |
-- @'mappend'@ deduced from @FreeAlg []@ @MAlg@ instance.
k_inv_monoid_mappend :: MAlg [] a => a -> a -> a
k_inv_monoid_mappend a b = foldFreeMAlg (FreeMAlg [a, b])
-- |
-- @'<>'@ deduced from @FreeAlg NonEmpty@ @MAlg@ instance.
k_inv_semigroup_append :: MAlg NonEmpty a => a -> a -> a
k_inv_semigroup_append a b = foldFreeMAlg (FreeMAlg (a :| [b]))
k_inv_pointed :: MAlg Maybe a => a
k_inv_pointed = foldFreeMAlg (FreeMAlg Nothing)
-- |
-- @'invert'@ deduced from @FreeAlg FreeGroupL@ @MAlg@ instance.
k_inv_group_invert :: (MAlg FreeGroupL a, Eq a) => a -> a
k_inv_group_invert a = foldFreeMAlg (FreeMAlg (FreeGroup.fromList [Left a]))