Permalink
Switch branches/tags
Nothing to show
Find file Copy path
Fetching contributors…
Cannot retrieve contributors at this time
4047 lines (3412 sloc) 138 KB
// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2012 The Bitcoin developers
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include "alert.h"
#include "checkpoints.h"
#include "db.h"
#include "txdb.h"
#include "net.h"
#include "init.h"
#include "ui_interface.h"
#include "checkqueue.h"
#include "kernel.h"
#include <boost/algorithm/string/replace.hpp>
#include <boost/filesystem.hpp>
#include <boost/filesystem/fstream.hpp>
#include "main.h"
using namespace std;
using namespace boost;
CCriticalSection cs_setpwalletRegistered;
set<CWallet*> setpwalletRegistered;
CCriticalSection cs_main;
CTxMemPool mempool;
unsigned int nTransactionsUpdated = 0;
map<uint256, CBlockIndex*> mapBlockIndex;
set<pair<COutPoint, unsigned int> > setStakeSeen;
CBigNum bnProofOfWorkLimit(~uint256(0) >> 20); // "standard" scrypt target limit for proof of work, results with 0,000244140625 proof-of-work difficulty
CBigNum bnProofOfStakeLegacyLimit(~uint256(0) >> 20); // proof of stake target limit from block #15000 and until 20 June 2013, results with 0,00390625 proof of stake difficulty
CBigNum bnProofOfStakeLimit(~uint256(0) >> 20); // proof of stake target limit since 20 June 2013, equal to 0.03125 proof of stake difficulty
CBigNum bnProofOfStakeHardLimit(~uint256(0) >> 20); // disabled temporarily, will be used in the future to fix minimal proof of stake difficulty at 0.25
uint256 nPoWBase = uint256("0x00000000ffff0000000000000000000000000000000000000000000000000000"); // difficulty-1 target
CBigNum bnProofOfWorkLimitTestNet(~uint256(0) >> 16);
unsigned int nStakeMinAge = 30 * 24 * nOneHour; // 30 days as zero time weight
unsigned int nStakeMaxAge = 90 * 24 * nOneHour; // 90 days as full weight
unsigned int nStakeTargetSpacing = 1 * 60; // 1-minute stakes spacing
int64_t nTargetSpacing = 1 * 60; // Same as the above
unsigned int nModifierInterval = 1 * nOneHour; // time to elapse before new modifier is computed
int nCoinbaseMaturity = 60;
CBlockIndex* pindexGenesisBlock = NULL;
int nBestHeight = -1;
uint256 nBestChainTrust = 0;
uint256 nBestInvalidTrust = 0;
uint256 hashBestChain = 0;
CBlockIndex* pindexBest = NULL;
int64_t nTimeBestReceived = 0;
int nScriptCheckThreads = 0;
CMedianFilter<int> cPeerBlockCounts(5, 0); // Amount of blocks that other nodes claim to have
map<uint256, CBlock*> mapOrphanBlocks;
multimap<uint256, CBlock*> mapOrphanBlocksByPrev;
set<pair<COutPoint, unsigned int> > setStakeSeenOrphan;
map<uint256, uint256> mapProofOfStake;
map<uint256, CTransaction> mapOrphanTransactions;
map<uint256, set<uint256> > mapOrphanTransactionsByPrev;
// Constant stuff for coinbase transactions we create:
CScript COINBASE_FLAGS;
const string strMessageMagic = "CereiPayCoin Signed Message:\n";
// Settings
int64_t nTransactionFee = MIN_TX_FEE;
int64_t nMinimumInputValue = MIN_TXOUT_AMOUNT;
// Ping and address broadcast intervals
int64_t nPingInterval = 30 * 60;
int64_t nBroadcastInterval = nOneDay;
extern enum Checkpoints::CPMode CheckpointsMode;
//////////////////////////////////////////////////////////////////////////////
//
// dispatching functions
//
// These functions dispatch to one or all registered wallets
void RegisterWallet(CWallet* pwalletIn)
{
{
LOCK(cs_setpwalletRegistered);
setpwalletRegistered.insert(pwalletIn);
}
}
void UnregisterWallet(CWallet* pwalletIn)
{
{
LOCK(cs_setpwalletRegistered);
setpwalletRegistered.erase(pwalletIn);
}
}
// check whether the passed transaction is from us
bool static IsFromMe(CTransaction& tx)
{
BOOST_FOREACH(CWallet* pwallet, setpwalletRegistered)
if (pwallet->IsFromMe(tx))
return true;
return false;
}
// get the wallet transaction with the given hash (if it exists)
bool static GetTransaction(const uint256& hashTx, CWalletTx& wtx)
{
BOOST_FOREACH(CWallet* pwallet, setpwalletRegistered)
if (pwallet->GetTransaction(hashTx,wtx))
return true;
return false;
}
// erases transaction with the given hash from all wallets
void static EraseFromWallets(uint256 hash)
{
BOOST_FOREACH(CWallet* pwallet, setpwalletRegistered)
pwallet->EraseFromWallet(hash);
}
// make sure all wallets know about the given transaction, in the given block
void SyncWithWallets(const CTransaction& tx, const CBlock* pblock, bool fUpdate, bool fConnect)
{
if (!fConnect)
{
// wallets need to refund inputs when disconnecting coinstake
if (tx.IsCoinStake())
{
BOOST_FOREACH(CWallet* pwallet, setpwalletRegistered)
if (pwallet->IsFromMe(tx))
pwallet->DisableTransaction(tx);
}
return;
}
BOOST_FOREACH(CWallet* pwallet, setpwalletRegistered)
pwallet->AddToWalletIfInvolvingMe(tx, pblock, fUpdate);
}
// notify wallets about a new best chain
void static SetBestChain(const CBlockLocator& loc)
{
BOOST_FOREACH(CWallet* pwallet, setpwalletRegistered)
pwallet->SetBestChain(loc);
}
// notify wallets about an updated transaction
void static UpdatedTransaction(const uint256& hashTx)
{
BOOST_FOREACH(CWallet* pwallet, setpwalletRegistered)
pwallet->UpdatedTransaction(hashTx);
}
// dump all wallets
void static PrintWallets(const CBlock& block)
{
BOOST_FOREACH(CWallet* pwallet, setpwalletRegistered)
pwallet->PrintWallet(block);
}
// notify wallets about an incoming inventory (for request counts)
void static Inventory(const uint256& hash)
{
BOOST_FOREACH(CWallet* pwallet, setpwalletRegistered)
pwallet->Inventory(hash);
}
// ask wallets to resend their transactions
void ResendWalletTransactions()
{
BOOST_FOREACH(CWallet* pwallet, setpwalletRegistered)
pwallet->ResendWalletTransactions();
}
//////////////////////////////////////////////////////////////////////////////
//
// mapOrphanTransactions
//
bool AddOrphanTx(const CTransaction& tx)
{
uint256 hash = tx.GetHash();
if (mapOrphanTransactions.count(hash))
return false;
// Ignore big transactions, to avoid a
// send-big-orphans memory exhaustion attack. If a peer has a legitimate
// large transaction with a missing parent then we assume
// it will rebroadcast it later, after the parent transaction(s)
// have been mined or received.
// 10,000 orphans, each of which is at most 5,000 bytes big is
// at most 500 megabytes of orphans:
size_t nSize = tx.GetSerializeSize(SER_NETWORK, CTransaction::CURRENT_VERSION);
if (nSize > 5000)
{
printf("ignoring large orphan tx (size: %" PRIszu ", hash: %s)\n", nSize, hash.ToString().substr(0,10).c_str());
return false;
}
mapOrphanTransactions[hash] = tx;
BOOST_FOREACH(const CTxIn& txin, tx.vin)
mapOrphanTransactionsByPrev[txin.prevout.hash].insert(hash);
printf("stored orphan tx %s (mapsz %" PRIszu ")\n", hash.ToString().substr(0,10).c_str(),
mapOrphanTransactions.size());
return true;
}
void static EraseOrphanTx(uint256 hash)
{
if (!mapOrphanTransactions.count(hash))
return;
const CTransaction& tx = mapOrphanTransactions[hash];
BOOST_FOREACH(const CTxIn& txin, tx.vin)
{
mapOrphanTransactionsByPrev[txin.prevout.hash].erase(hash);
if (mapOrphanTransactionsByPrev[txin.prevout.hash].empty())
mapOrphanTransactionsByPrev.erase(txin.prevout.hash);
}
mapOrphanTransactions.erase(hash);
}
unsigned int LimitOrphanTxSize(unsigned int nMaxOrphans)
{
unsigned int nEvicted = 0;
while (mapOrphanTransactions.size() > nMaxOrphans)
{
// Evict a random orphan:
uint256 randomhash = GetRandHash();
map<uint256, CTransaction>::iterator it = mapOrphanTransactions.lower_bound(randomhash);
if (it == mapOrphanTransactions.end())
it = mapOrphanTransactions.begin();
EraseOrphanTx(it->first);
++nEvicted;
}
return nEvicted;
}
//////////////////////////////////////////////////////////////////////////////
//
// CTransaction and CTxIndex
//
bool CTransaction::ReadFromDisk(CTxDB& txdb, const uint256& hash, CTxIndex& txindexRet)
{
SetNull();
if (!txdb.ReadTxIndex(hash, txindexRet))
return false;
if (!ReadFromDisk(txindexRet.pos))
return false;
return true;
}
bool CTransaction::ReadFromDisk(CTxDB& txdb, COutPoint prevout, CTxIndex& txindexRet)
{
if (!ReadFromDisk(txdb, prevout.hash, txindexRet))
return false;
if (prevout.n >= vout.size())
{
SetNull();
return false;
}
return true;
}
bool CTransaction::ReadFromDisk(CTxDB& txdb, COutPoint prevout)
{
CTxIndex txindex;
return ReadFromDisk(txdb, prevout, txindex);
}
bool CTransaction::ReadFromDisk(COutPoint prevout)
{
CTxDB txdb("r");
CTxIndex txindex;
return ReadFromDisk(txdb, prevout, txindex);
}
bool CTransaction::IsStandard(string& strReason) const
{
if (nVersion > CTransaction::CURRENT_VERSION)
{
strReason = "version";
return false;
}
unsigned int nDataOut = 0;
txnouttype whichType;
BOOST_FOREACH(const CTxIn& txin, vin)
{
// Biggest 'standard' txin is a 15-of-15 P2SH multisig with compressed
// keys. (remember the 520 byte limit on redeemScript size) That works
// out to a (15*(33+1))+3=513 byte redeemScript, 513+1+15*(73+1)=1624
// bytes of scriptSig, which we round off to 1650 bytes for some minor
// future-proofing. That's also enough to spend a 20-of-20
// CHECKMULTISIG scriptPubKey, though such a scriptPubKey is not
// considered standard)
if (txin.scriptSig.size() > 1650)
{
strReason = "scriptsig-size";
return false;
}
if (!txin.scriptSig.IsPushOnly())
{
strReason = "scriptsig-not-pushonly";
return false;
}
if (!txin.scriptSig.HasCanonicalPushes()) {
strReason = "txin-scriptsig-not-canonicalpushes";
return false;
}
}
BOOST_FOREACH(const CTxOut& txout, vout) {
if (!::IsStandard(txout.scriptPubKey, whichType)) {
strReason = "scriptpubkey";
return false;
}
if (whichType == TX_NULL_DATA)
nDataOut++;
else {
if (txout.nValue == 0) {
strReason = "txout-value=0";
return false;
}
if (!txout.scriptPubKey.HasCanonicalPushes()) {
strReason = "txout-scriptsig-not-canonicalpushes";
return false;
}
}
}
// only one OP_RETURN txout is permitted
if (nDataOut > 1) {
strReason = "multi-op-return";
return false;
}
return true;
}
//
// Check transaction inputs, and make sure any
// pay-to-script-hash transactions are evaluating IsStandard scripts
//
// Why bother? To avoid denial-of-service attacks; an attacker
// can submit a standard HASH... OP_EQUAL transaction,
// which will get accepted into blocks. The redemption
// script can be anything; an attacker could use a very
// expensive-to-check-upon-redemption script like:
// DUP CHECKSIG DROP ... repeated 100 times... OP_1
//
bool CTransaction::AreInputsStandard(const MapPrevTx& mapInputs) const
{
if (IsCoinBase())
return true; // Coinbases don't use vin normally
for (unsigned int i = 0; i < vin.size(); i++)
{
const CTxOut& prev = GetOutputFor(vin[i], mapInputs);
vector<vector<unsigned char> > vSolutions;
txnouttype whichType;
// get the scriptPubKey corresponding to this input:
const CScript& prevScript = prev.scriptPubKey;
if (!Solver(prevScript, whichType, vSolutions))
return false;
int nArgsExpected = ScriptSigArgsExpected(whichType, vSolutions);
if (nArgsExpected < 0)
return false;
// Transactions with extra stuff in their scriptSigs are
// non-standard. Note that this EvalScript() call will
// be quick, because if there are any operations
// beside "push data" in the scriptSig the
// IsStandard() call returns false
vector<vector<unsigned char> > stack;
if (!EvalScript(stack, vin[i].scriptSig, *this, i, false, 0))
return false;
if (whichType == TX_SCRIPTHASH)
{
if (stack.empty())
return false;
CScript subscript(stack.back().begin(), stack.back().end());
vector<vector<unsigned char> > vSolutions2;
txnouttype whichType2;
if (!Solver(subscript, whichType2, vSolutions2))
return false;
if (whichType2 == TX_SCRIPTHASH)
return false;
int tmpExpected;
tmpExpected = ScriptSigArgsExpected(whichType2, vSolutions2);
if (tmpExpected < 0)
return false;
nArgsExpected += tmpExpected;
}
if (stack.size() != (unsigned int)nArgsExpected)
return false;
}
return true;
}
unsigned int
CTransaction::GetLegacySigOpCount() const
{
unsigned int nSigOps = 0;
if (!IsCoinBase() || nTime < COINBASE_SIGOPS_SWITCH_TIME)
{
// Coinbase scriptsigs are never executed, so there is
// no sense in calculation of sigops.
BOOST_FOREACH(const CTxIn& txin, vin)
{
nSigOps += txin.scriptSig.GetSigOpCount(false);
}
}
BOOST_FOREACH(const CTxOut& txout, vout)
{
nSigOps += txout.scriptPubKey.GetSigOpCount(false);
}
return nSigOps;
}
int CMerkleTx::SetMerkleBranch(const CBlock* pblock)
{
if (fClient)
{
if (hashBlock == 0)
return 0;
}
else
{
CBlock blockTmp;
if (pblock == NULL)
{
// Load the block this tx is in
CTxIndex txindex;
if (!CTxDB("r").ReadTxIndex(GetHash(), txindex))
return 0;
if (!blockTmp.ReadFromDisk(txindex.pos.nFile, txindex.pos.nBlockPos))
return 0;
pblock = &blockTmp;
}
// Update the tx's hashBlock
hashBlock = pblock->GetHash();
// Locate the transaction
for (nIndex = 0; nIndex < (int)pblock->vtx.size(); nIndex++)
if (pblock->vtx[nIndex] == *(CTransaction*)this)
break;
if (nIndex == (int)pblock->vtx.size())
{
vMerkleBranch.clear();
nIndex = -1;
printf("ERROR: SetMerkleBranch() : couldn't find tx in block\n");
return 0;
}
// Fill in merkle branch
vMerkleBranch = pblock->GetMerkleBranch(nIndex);
}
// Is the tx in a block that's in the main chain
map<uint256, CBlockIndex*>::iterator mi = mapBlockIndex.find(hashBlock);
if (mi == mapBlockIndex.end())
return 0;
CBlockIndex* pindex = (*mi).second;
if (!pindex || !pindex->IsInMainChain())
return 0;
return pindexBest->nHeight - pindex->nHeight + 1;
}
bool CTransaction::CheckTransaction() const
{
// Basic checks that don't depend on any context
if (vin.empty())
return DoS(10, error("CTransaction::CheckTransaction() : vin empty"));
if (vout.empty())
return DoS(10, error("CTransaction::CheckTransaction() : vout empty"));
// Time (prevent mempool memory exhaustion attack)
if (nTime > FutureDrift(GetAdjustedTime()))
return DoS(10, error("CTransaction::CheckTransaction() : timestamp is too far into the future"));
// Size limits
if (::GetSerializeSize(*this, SER_NETWORK, PROTOCOL_VERSION) > MAX_BLOCK_SIZE)
return DoS(100, error("CTransaction::CheckTransaction() : size limits failed"));
// Check for negative or overflow output values
int64_t nValueOut = 0;
for (unsigned int i = 0; i < vout.size(); i++)
{
const CTxOut& txout = vout[i];
if (txout.IsEmpty() && !IsCoinBase() && !IsCoinStake())
return DoS(100, error("CTransaction::CheckTransaction() : txout empty for user transaction"));
if (txout.nValue < 0)
return DoS(100, error("CTransaction::CheckTransaction() : txout.nValue is negative"));
if (txout.nValue > MAX_MONEY)
return DoS(100, error("CTransaction::CheckTransaction() : txout.nValue too high"));
nValueOut += txout.nValue;
if (!MoneyRange(nValueOut))
return DoS(100, error("CTransaction::CheckTransaction() : txout total out of range"));
}
// Check for duplicate inputs
set<COutPoint> vInOutPoints;
BOOST_FOREACH(const CTxIn& txin, vin)
{
if (vInOutPoints.count(txin.prevout))
return false;
vInOutPoints.insert(txin.prevout);
}
if (IsCoinBase())
{
if (vin[0].scriptSig.size() < 2 || vin[0].scriptSig.size() > 100)
return DoS(100, error("CTransaction::CheckTransaction() : coinbase script size is invalid"));
}
else
{
BOOST_FOREACH(const CTxIn& txin, vin)
if (txin.prevout.IsNull())
return DoS(10, error("CTransaction::CheckTransaction() : prevout is null"));
}
return true;
}
int64_t CTransaction::GetMinFee(unsigned int nBlockSize, bool fAllowFree, enum GetMinFee_mode mode, unsigned int nBytes) const
{
int64_t nMinTxFee = MIN_TX_FEE, nMinRelayTxFee = MIN_RELAY_TX_FEE;
if(IsCoinStake())
{
// Enforce 0.01 as minimum fee for coinstake
nMinTxFee = CENT;
nMinRelayTxFee = CENT;
}
// Base fee is either nMinTxFee or nMinRelayTxFee
int64_t nBaseFee = (mode == GMF_RELAY) ? nMinRelayTxFee : nMinTxFee;
unsigned int nNewBlockSize = nBlockSize + nBytes;
int64_t nMinFee = (1 + (int64_t)nBytes / 1000) * nBaseFee;
if (fAllowFree)
{
if (nBlockSize == 1)
{
// Transactions under 1K are free
if (nBytes < 1000)
nMinFee = 0;
}
else
{
// Free transaction area
if (nNewBlockSize < 27000)
nMinFee = 0;
}
}
// To limit dust spam, require additional MIN_TX_FEE/MIN_RELAY_TX_FEE for
// each non empty output which is less than 0.01
//
// It's safe to ignore empty outputs here, because these inputs are allowed
// only for coinbase and coinstake transactions.
BOOST_FOREACH(const CTxOut& txout, vout)
if (txout.nValue < CENT && !txout.IsEmpty())
nMinFee += nBaseFee;
// Raise the price as the block approaches full
if (nBlockSize != 1 && nNewBlockSize >= MAX_BLOCK_SIZE_GEN/2)
{
if (nNewBlockSize >= MAX_BLOCK_SIZE_GEN)
return MAX_MONEY;
nMinFee *= MAX_BLOCK_SIZE_GEN / (MAX_BLOCK_SIZE_GEN - nNewBlockSize);
}
if (!MoneyRange(nMinFee))
nMinFee = MAX_MONEY;
return nMinFee;
}
bool CTxMemPool::accept(CTxDB& txdb, CTransaction &tx, bool fCheckInputs,
bool* pfMissingInputs)
{
if (pfMissingInputs)
*pfMissingInputs = false;
if (!tx.CheckTransaction())
return error("CTxMemPool::accept() : CheckTransaction failed");
// Coinbase is only valid in a block, not as a loose transaction
if (tx.IsCoinBase())
return tx.DoS(100, error("CTxMemPool::accept() : coinbase as individual tx"));
// ppcoin: coinstake is also only valid in a block, not as a loose transaction
if (tx.IsCoinStake())
return tx.DoS(100, error("CTxMemPool::accept() : coinstake as individual tx"));
// To help v0.1.5 clients who would see it as a negative number
if ((int64_t)tx.nLockTime > std::numeric_limits<int>::max())
return error("CTxMemPool::accept() : not accepting nLockTime beyond 2038 yet");
// Rather not work on nonstandard transactions (unless -testnet)
string strNonStd;
if (!fTestNet && !tx.IsStandard(strNonStd))
return error("CTxMemPool::accept() : nonstandard transaction (%s)", strNonStd.c_str());
// Do we already have it?
uint256 hash = tx.GetHash();
{
LOCK(cs);
if (mapTx.count(hash))
return false;
}
if (fCheckInputs)
if (txdb.ContainsTx(hash))
return false;
// Check for conflicts with in-memory transactions
CTransaction* ptxOld = NULL;
for (unsigned int i = 0; i < tx.vin.size(); i++)
{
COutPoint outpoint = tx.vin[i].prevout;
if (mapNextTx.count(outpoint))
{
// Disable replacement feature for now
return false;
// Allow replacing with a newer version of the same transaction
if (i != 0)
return false;
ptxOld = mapNextTx[outpoint].ptx;
if (ptxOld->IsFinal())
return false;
if (!tx.IsNewerThan(*ptxOld))
return false;
for (unsigned int i = 0; i < tx.vin.size(); i++)
{
COutPoint outpoint = tx.vin[i].prevout;
if (!mapNextTx.count(outpoint) || mapNextTx[outpoint].ptx != ptxOld)
return false;
}
break;
}
}
if (fCheckInputs)
{
MapPrevTx mapInputs;
map<uint256, CTxIndex> mapUnused;
bool fInvalid = false;
if (!tx.FetchInputs(txdb, mapUnused, false, false, mapInputs, fInvalid))
{
if (fInvalid)
return error("CTxMemPool::accept() : FetchInputs found invalid tx %s", hash.ToString().substr(0,10).c_str());
if (pfMissingInputs)
*pfMissingInputs = true;
return false;
}
// Check for non-standard pay-to-script-hash in inputs
if (!tx.AreInputsStandard(mapInputs) && !fTestNet)
return error("CTxMemPool::accept() : nonstandard transaction input");
// Note: if you modify this code to accept non-standard transactions, then
// you should add code here to check that the transaction does a
// reasonable number of ECDSA signature verifications.
int64_t nFees = tx.GetValueIn(mapInputs)-tx.GetValueOut();
unsigned int nSize = ::GetSerializeSize(tx, SER_NETWORK, PROTOCOL_VERSION);
// Don't accept it if it can't get into a block
int64_t txMinFee = tx.GetMinFee(1000, true, GMF_RELAY, nSize);
if (nFees < txMinFee)
return error("CTxMemPool::accept() : not enough fees %s, %" PRId64 " < %" PRId64,
hash.ToString().c_str(),
nFees, txMinFee);
// Continuously rate-limit free transactions
// This mitigates 'penny-flooding' -- sending thousands of free transactions just to
// be annoying or make others' transactions take longer to confirm.
if (nFees < MIN_RELAY_TX_FEE)
{
static CCriticalSection cs;
static double dFreeCount;
static int64_t nLastTime;
int64_t nNow = GetTime();
{
LOCK(cs);
// Use an exponentially decaying ~10-minute window:
dFreeCount *= pow(1.0 - 1.0/600.0, (double)(nNow - nLastTime));
nLastTime = nNow;
// -limitfreerelay unit is thousand-bytes-per-minute
// At default rate it would take over a month to fill 1GB
if (dFreeCount > GetArg("-limitfreerelay", 15)*10*1000 && !IsFromMe(tx))
return error("CTxMemPool::accept() : free transaction rejected by rate limiter");
if (fDebug)
printf("Rate limit dFreeCount: %g => %g\n", dFreeCount, dFreeCount+nSize);
dFreeCount += nSize;
}
}
// Check against previous transactions
// This is done last to help prevent CPU exhaustion denial-of-service attacks.
if (!tx.ConnectInputs(txdb, mapInputs, mapUnused, CDiskTxPos(1,1,1), pindexBest, false, false, true, STRICT_FLAGS))
{
return error("CTxMemPool::accept() : ConnectInputs failed %s", hash.ToString().substr(0,10).c_str());
}
}
// Store transaction in memory
{
LOCK(cs);
if (ptxOld)
{
printf("CTxMemPool::accept() : replacing tx %s with new version\n", ptxOld->GetHash().ToString().c_str());
remove(*ptxOld);
}
addUnchecked(hash, tx);
}
///// are we sure this is ok when loading transactions or restoring block txes
// If updated, erase old tx from wallet
if (ptxOld)
EraseFromWallets(ptxOld->GetHash());
printf("CTxMemPool::accept() : accepted %s (poolsz %" PRIszu ")\n",
hash.ToString().substr(0,10).c_str(),
mapTx.size());
return true;
}
bool CTransaction::AcceptToMemoryPool(CTxDB& txdb, bool fCheckInputs, bool* pfMissingInputs)
{
return mempool.accept(txdb, *this, fCheckInputs, pfMissingInputs);
}
bool CTxMemPool::addUnchecked(const uint256& hash, CTransaction &tx)
{
// Add to memory pool without checking anything. Don't call this directly,
// call CTxMemPool::accept to properly check the transaction first.
{
mapTx[hash] = tx;
for (unsigned int i = 0; i < tx.vin.size(); i++)
mapNextTx[tx.vin[i].prevout] = CInPoint(&mapTx[hash], i);
nTransactionsUpdated++;
}
return true;
}
bool CTxMemPool::remove(CTransaction &tx)
{
// Remove transaction from memory pool
{
LOCK(cs);
uint256 hash = tx.GetHash();
if (mapTx.count(hash))
{
BOOST_FOREACH(const CTxIn& txin, tx.vin)
mapNextTx.erase(txin.prevout);
mapTx.erase(hash);
nTransactionsUpdated++;
}
}
return true;
}
void CTxMemPool::clear()
{
LOCK(cs);
mapTx.clear();
mapNextTx.clear();
++nTransactionsUpdated;
}
void CTxMemPool::queryHashes(std::vector<uint256>& vtxid)
{
vtxid.clear();
LOCK(cs);
vtxid.reserve(mapTx.size());
for (map<uint256, CTransaction>::iterator mi = mapTx.begin(); mi != mapTx.end(); ++mi)
vtxid.push_back((*mi).first);
}
int CMerkleTx::GetDepthInMainChain(CBlockIndex* &pindexRet) const
{
if (hashBlock == 0 || nIndex == -1)
return 0;
// Find the block it claims to be in
map<uint256, CBlockIndex*>::iterator mi = mapBlockIndex.find(hashBlock);
if (mi == mapBlockIndex.end())
return 0;
CBlockIndex* pindex = (*mi).second;
if (!pindex || !pindex->IsInMainChain())
return 0;
// Make sure the merkle branch connects to this block
if (!fMerkleVerified)
{
if (CBlock::CheckMerkleBranch(GetHash(), vMerkleBranch, nIndex) != pindex->hashMerkleRoot)
return 0;
fMerkleVerified = true;
}
pindexRet = pindex;
return pindexBest->nHeight - pindex->nHeight + 1;
}
int CMerkleTx::GetBlocksToMaturity() const
{
if (!(IsCoinBase() || IsCoinStake()))
return 0;
return max(0, (nCoinbaseMaturity+20) - GetDepthInMainChain());
}
bool CMerkleTx::AcceptToMemoryPool(CTxDB& txdb, bool fCheckInputs)
{
if (fClient)
{
if (!IsInMainChain() && !ClientConnectInputs())
return false;
return CTransaction::AcceptToMemoryPool(txdb, false);
}
else
{
return CTransaction::AcceptToMemoryPool(txdb, fCheckInputs);
}
}
bool CMerkleTx::AcceptToMemoryPool()
{
CTxDB txdb("r");
return AcceptToMemoryPool(txdb);
}
bool CWalletTx::AcceptWalletTransaction(CTxDB& txdb, bool fCheckInputs)
{
{
LOCK(mempool.cs);
// Add previous supporting transactions first
BOOST_FOREACH(CMerkleTx& tx, vtxPrev)
{
if (!(tx.IsCoinBase() || tx.IsCoinStake()))
{
uint256 hash = tx.GetHash();
if (!mempool.exists(hash) && !txdb.ContainsTx(hash))
tx.AcceptToMemoryPool(txdb, fCheckInputs);
}
}
return AcceptToMemoryPool(txdb, fCheckInputs);
}
return false;
}
bool CWalletTx::AcceptWalletTransaction()
{
CTxDB txdb("r");
return AcceptWalletTransaction(txdb);
}
int CTxIndex::GetDepthInMainChain() const
{
// Read block header
CBlock block;
if (!block.ReadFromDisk(pos.nFile, pos.nBlockPos, false))
return 0;
// Find the block in the index
map<uint256, CBlockIndex*>::iterator mi = mapBlockIndex.find(block.GetHash());
if (mi == mapBlockIndex.end())
return 0;
CBlockIndex* pindex = (*mi).second;
if (!pindex || !pindex->IsInMainChain())
return 0;
return 1 + nBestHeight - pindex->nHeight;
}
// Return transaction in tx, and if it was found inside a block, its hash is placed in hashBlock
bool GetTransaction(const uint256 &hash, CTransaction &tx, uint256 &hashBlock)
{
{
LOCK(cs_main);
{
LOCK(mempool.cs);
if (mempool.exists(hash))
{
tx = mempool.lookup(hash);
return true;
}
}
CTxDB txdb("r");
CTxIndex txindex;
if (tx.ReadFromDisk(txdb, hash, txindex))
{
CBlock block;
if (block.ReadFromDisk(txindex.pos.nFile, txindex.pos.nBlockPos, false))
hashBlock = block.GetHash();
return true;
}
// look for transaction in disconnected blocks to find orphaned CoinBase and CoinStake transactions
BOOST_FOREACH(PAIRTYPE(const uint256, CBlockIndex*)& item, mapBlockIndex)
{
CBlockIndex* pindex = item.second;
if (pindex == pindexBest || pindex->pnext != 0)
continue;
CBlock block;
if (!block.ReadFromDisk(pindex))
continue;
BOOST_FOREACH(const CTransaction& txOrphan, block.vtx)
{
if (txOrphan.GetHash() == hash)
{
tx = txOrphan;
return true;
}
}
}
}
return false;
}
//////////////////////////////////////////////////////////////////////////////
//
// CBlock and CBlockIndex
//
static CBlockIndex* pblockindexFBBHLast;
CBlockIndex* FindBlockByHeight(int nHeight)
{
CBlockIndex *pblockindex;
if (nHeight < nBestHeight / 2)
pblockindex = pindexGenesisBlock;
else
pblockindex = pindexBest;
if (pblockindexFBBHLast && abs(nHeight - pblockindex->nHeight) > abs(nHeight - pblockindexFBBHLast->nHeight))
pblockindex = pblockindexFBBHLast;
while (pblockindex->nHeight > nHeight)
pblockindex = pblockindex->pprev;
while (pblockindex->nHeight < nHeight)
pblockindex = pblockindex->pnext;
pblockindexFBBHLast = pblockindex;
return pblockindex;
}
bool CBlock::ReadFromDisk(const CBlockIndex* pindex, bool fReadTransactions)
{
if (!fReadTransactions)
{
*this = pindex->GetBlockHeader();
return true;
}
if (!ReadFromDisk(pindex->nFile, pindex->nBlockPos, fReadTransactions))
return false;
if (GetHash() != pindex->GetBlockHash())
return error("CBlock::ReadFromDisk() : GetHash() doesn't match index");
return true;
}
uint256 static GetOrphanRoot(const CBlock* pblock)
{
// Work back to the first block in the orphan chain
while (mapOrphanBlocks.count(pblock->hashPrevBlock))
pblock = mapOrphanBlocks[pblock->hashPrevBlock];
return pblock->GetHash();
}
// ppcoin: find block wanted by given orphan block
uint256 WantedByOrphan(const CBlock* pblockOrphan)
{
// Work back to the first block in the orphan chain
while (mapOrphanBlocks.count(pblockOrphan->hashPrevBlock))
pblockOrphan = mapOrphanBlocks[pblockOrphan->hashPrevBlock];
return pblockOrphan->hashPrevBlock;
}
// select stake target limit according to hard-coded conditions
CBigNum inline GetProofOfStakeLimit(int nHeight, unsigned int nTime)
{
if(fTestNet) // separate proof of stake target limit for testnet
return bnProofOfStakeLimit;
if(nTime > TARGETS_SWITCH_TIME) // 27 bits since 20 July 2013
return bnProofOfStakeLimit;
if(nHeight + 1 > 15000) // 24 bits since block 15000
return bnProofOfStakeLegacyLimit;
if(nHeight + 1 > 14060) // 31 bits since block 14060 until 15000
return bnProofOfStakeHardLimit;
return bnProofOfWorkLimit; // return bnProofOfWorkLimit of none matched
}
// miner's coin base reward based on nBits
int64_t GetProofOfWorkReward(unsigned int nBits, int64_t nFees, int nHeight)
{
int64_t nSubsidy = 7 * COIN;
// Force block reward to zero when right shift is undefined.
//int halvings = nHeight / 7785714285714;
//if (halvings >= 64)
// return nFees;
if (nHeight == 1)
return 11000000000004 * COIN;
//nSubsidy >>= halvings;
if (fDebug && GetBoolArg("-printcreation"))
printf("GetProofOfWorkReward() : create=%s nBits=0x%08x nSubsidy=%" PRId64 "\n", FormatMoney(nSubsidy).c_str(), nBits, nSubsidy);
return nSubsidy + nFees;
}
// miner's coin stake reward based on nBits and coin age spent (coin-days)
int64_t GetProofOfStakeReward(int64_t nCoinAge, unsigned int nBits, int64_t nTime, bool bCoinYearOnly)
{
int64_t nRewardCoinYear = 3 * CENT;
int64_t nSubsidy = nCoinAge * nRewardCoinYear / 365;
if (fDebug && GetBoolArg("-printcreation"))
printf("GetProofOfStakeReward(): create=%s nCoinAge=%"PRId64"\n", FormatMoney(nSubsidy).c_str(), nCoinAge);
return nSubsidy; // + nFees;
}
static const int64_t nTargetTimespan = 1 * 15 * 60;
// Get proof of work blocks max spacing according to hard-coded conditions
// Not in use right now!
int64_t inline GetTargetSpacingWorkMax(int nHeight, unsigned int nTime)
{
if(nTime > TARGETS_SWITCH_TIME)
return 3 * nStakeTargetSpacing; // 30 minutes on mainNet since 20 Jul 2013 00:00:00
if(fTestNet)
return 3 * nStakeTargetSpacing; // 15 minutes on testNet
return 12 * nStakeTargetSpacing; // 2 hours otherwise
}
//
// maximum nBits value could possible be required nTime after
//
unsigned int ComputeMaxBits(CBigNum bnTargetLimit, unsigned int nBase, int64_t nTime)
{
CBigNum bnResult;
bnResult.SetCompact(nBase);
bnResult *= 2;
while (nTime > 0 && bnResult < bnTargetLimit)
{
// Maximum 200% adjustment per day...
bnResult *= 2;
nTime -= nOneDay;
}
if (bnResult > bnTargetLimit)
bnResult = bnTargetLimit;
return bnResult.GetCompact();
}
//
// minimum amount of work that could possibly be required nTime after
// minimum proof-of-work required was nBase
//
unsigned int ComputeMinWork(unsigned int nBase, int64_t nTime)
{
return ComputeMaxBits(bnProofOfWorkLimit, nBase, nTime);
}
//
// minimum amount of stake that could possibly be required nTime after
// minimum proof-of-stake required was nBase
//
unsigned int ComputeMinStake(unsigned int nBase, int64_t nTime, unsigned int nBlockTime)
{
return ComputeMaxBits(GetProofOfStakeLimit(0, nBlockTime), nBase, nTime);
}
// ppcoin: find last block index up to pindex
const CBlockIndex* GetLastBlockIndex(const CBlockIndex* pindex, bool fProofOfStake)
{
while (pindex && pindex->pprev && (pindex->IsProofOfStake() != fProofOfStake))
pindex = pindex->pprev;
return pindex;
}
unsigned int GetNextTargetRequired(const CBlockIndex* pindexLast, bool fProofOfStake)
{
CBigNum bnTargetLimit = !fProofOfStake ? bnProofOfWorkLimit : GetProofOfStakeLimit(pindexLast->nHeight, pindexLast->nTime);
if (pindexLast == NULL)
return bnTargetLimit.GetCompact(); // genesis block
const CBlockIndex* pindexPrev = GetLastBlockIndex(pindexLast, fProofOfStake);
if (pindexPrev->pprev == NULL)
return bnTargetLimit.GetCompact(); // first block
const CBlockIndex* pindexPrevPrev = GetLastBlockIndex(pindexPrev->pprev, fProofOfStake);
if (pindexPrevPrev->pprev == NULL)
return bnTargetLimit.GetCompact(); // second block
int64_t nActualSpacing = pindexPrev->GetBlockTime() - pindexPrevPrev->GetBlockTime();
// Don't allow zero or negative values.
if (nActualSpacing < 1)
nActualSpacing = 1;
// Limit the impact of blocks that are unusually far in the future
if (nActualSpacing > 3 * nTargetSpacing)
nActualSpacing = 3 * nTargetSpacing;
// ppcoin: target change every block
// ppcoin: retarget with exponential moving toward target spacing
CBigNum bnNew;
bnNew.SetCompact(pindexPrev->nBits);
// The below is intentionally commented out. We use the same time for POW and POS.
// int64_t nTargetSpacing = fProofOfStake? nStakeTargetSpacing : min(GetTargetSpacingWorkMax(pindexLast->nHeight, pindexLast->nTime), (int64_t) nStakeTargetSpacing * (1 + pindexLast->nHeight - pindexPrev->nHeight));
int64_t nInterval = nTargetTimespan / nTargetSpacing;
bnNew *= ((nInterval - 1) * nTargetSpacing + nActualSpacing + nActualSpacing);
bnNew /= ((nInterval + 1) * nTargetSpacing);
if (bnNew > bnTargetLimit)
bnNew = bnTargetLimit;
return bnNew.GetCompact();
}
bool CheckProofOfWork(uint256 hash, unsigned int nBits)
{
CBigNum bnTarget;
bnTarget.SetCompact(nBits);
// Check range
if (bnTarget <= 0 || bnTarget > bnProofOfWorkLimit)
return error("CheckProofOfWork() : nBits below minimum work");
// Check proof of work matches claimed amount
if (hash > bnTarget.getuint256())
return error("CheckProofOfWork() : hash doesn't match nBits");
return true;
}
// Return maximum amount of blocks that other nodes claim to have
int GetNumBlocksOfPeers()
{
return std::max(cPeerBlockCounts.median(), Checkpoints::GetTotalBlocksEstimate());
}
bool IsInitialBlockDownload()
{
if (pindexBest == NULL || nBestHeight < Checkpoints::GetTotalBlocksEstimate())
return true;
static int64_t nLastUpdate;
static CBlockIndex* pindexLastBest;
int64_t nCurrentTime = GetTime();
if (pindexBest != pindexLastBest)
{
pindexLastBest = pindexBest;
nLastUpdate = nCurrentTime;
}
return (nCurrentTime - nLastUpdate < 10 &&
pindexBest->GetBlockTime() < nCurrentTime - nOneDay);
}
void static InvalidChainFound(CBlockIndex* pindexNew)
{
if (pindexNew->nChainTrust > nBestInvalidTrust)
{
nBestInvalidTrust = pindexNew->nChainTrust;
CTxDB().WriteBestInvalidTrust(CBigNum(nBestInvalidTrust));
uiInterface.NotifyBlocksChanged();
}
uint256 nBestInvalidBlockTrust = pindexNew->nChainTrust - pindexNew->pprev->nChainTrust;
uint256 nBestBlockTrust = pindexBest->nHeight != 0 ? (pindexBest->nChainTrust - pindexBest->pprev->nChainTrust) : pindexBest->nChainTrust;
printf("InvalidChainFound: invalid block=%s height=%d trust=%s blocktrust=%" PRId64 " date=%s\n",
pindexNew->GetBlockHash().ToString().substr(0,20).c_str(), pindexNew->nHeight,
CBigNum(pindexNew->nChainTrust).ToString().c_str(), nBestInvalidBlockTrust.Get64(),
DateTimeStrFormat("%x %H:%M:%S", pindexNew->GetBlockTime()).c_str());
printf("InvalidChainFound: current best=%s height=%d trust=%s blocktrust=%" PRId64 " date=%s\n",
hashBestChain.ToString().substr(0,20).c_str(), nBestHeight,
CBigNum(pindexBest->nChainTrust).ToString().c_str(),
nBestBlockTrust.Get64(),
DateTimeStrFormat("%x %H:%M:%S", pindexBest->GetBlockTime()).c_str());
}
void CBlock::UpdateTime(const CBlockIndex* pindexPrev)
{
nTime = max(GetBlockTime(), GetAdjustedTime());
}
bool CTransaction::DisconnectInputs(CTxDB& txdb)
{
// Relinquish previous transactions' spent pointers
if (!IsCoinBase())
{
BOOST_FOREACH(const CTxIn& txin, vin)
{
COutPoint prevout = txin.prevout;
// Get prev txindex from disk
CTxIndex txindex;
if (!txdb.ReadTxIndex(prevout.hash, txindex))
return error("DisconnectInputs() : ReadTxIndex failed");
if (prevout.n >= txindex.vSpent.size())
return error("DisconnectInputs() : prevout.n out of range");
// Mark outpoint as not spent
txindex.vSpent[prevout.n].SetNull();
// Write back
if (!txdb.UpdateTxIndex(prevout.hash, txindex))
return error("DisconnectInputs() : UpdateTxIndex failed");
}
}
// Remove transaction from index
// This can fail if a duplicate of this transaction was in a chain that got
// reorganized away. This is only possible if this transaction was completely
// spent, so erasing it would be a no-op anyway.
txdb.EraseTxIndex(*this);
return true;
}
bool CTransaction::FetchInputs(CTxDB& txdb, const map<uint256, CTxIndex>& mapTestPool,
bool fBlock, bool fMiner, MapPrevTx& inputsRet, bool& fInvalid)
{
// FetchInputs can return false either because we just haven't seen some inputs
// (in which case the transaction should be stored as an orphan)
// or because the transaction is malformed (in which case the transaction should
// be dropped). If tx is definitely invalid, fInvalid will be set to true.
fInvalid = false;
if (IsCoinBase())
return true; // Coinbase transactions have no inputs to fetch.
for (unsigned int i = 0; i < vin.size(); i++)
{
COutPoint prevout = vin[i].prevout;
if (inputsRet.count(prevout.hash))
continue; // Got it already
// Read txindex
CTxIndex& txindex = inputsRet[prevout.hash].first;
bool fFound = true;
if ((fBlock || fMiner) && mapTestPool.count(prevout.hash))
{
// Get txindex from current proposed changes
txindex = mapTestPool.find(prevout.hash)->second;
}
else
{
// Read txindex from txdb
fFound = txdb.ReadTxIndex(prevout.hash, txindex);
}
if (!fFound && (fBlock || fMiner))
return fMiner ? false : error("FetchInputs() : %s prev tx %s index entry not found", GetHash().ToString().substr(0,10).c_str(), prevout.hash.ToString().substr(0,10).c_str());
// Read txPrev
CTransaction& txPrev = inputsRet[prevout.hash].second;
if (!fFound || txindex.pos == CDiskTxPos(1,1,1))
{
// Get prev tx from single transactions in memory
{
LOCK(mempool.cs);
if (!mempool.exists(prevout.hash))
return error("FetchInputs() : %s mempool Tx prev not found %s", GetHash().ToString().substr(0,10).c_str(), prevout.hash.ToString().substr(0,10).c_str());
txPrev = mempool.lookup(prevout.hash);
}
if (!fFound)
txindex.vSpent.resize(txPrev.vout.size());
}
else
{
// Get prev tx from disk
if (!txPrev.ReadFromDisk(txindex.pos))
return error("FetchInputs() : %s ReadFromDisk prev tx %s failed", GetHash().ToString().substr(0,10).c_str(), prevout.hash.ToString().substr(0,10).c_str());
}
}
// Make sure all prevout.n indexes are valid:
for (unsigned int i = 0; i < vin.size(); i++)
{
const COutPoint prevout = vin[i].prevout;
assert(inputsRet.count(prevout.hash) != 0);
const CTxIndex& txindex = inputsRet[prevout.hash].first;
const CTransaction& txPrev = inputsRet[prevout.hash].second;
if (prevout.n >= txPrev.vout.size() || prevout.n >= txindex.vSpent.size())
{
// Revisit this if/when transaction replacement is implemented and allows
// adding inputs:
fInvalid = true;
return DoS(100, error("FetchInputs() : %s prevout.n out of range %d %" PRIszu " %" PRIszu " prev tx %s\n%s", GetHash().ToString().substr(0,10).c_str(), prevout.n, txPrev.vout.size(), txindex.vSpent.size(), prevout.hash.ToString().substr(0,10).c_str(), txPrev.ToString().c_str()));
}
}
return true;
}
const CTxOut& CTransaction::GetOutputFor(const CTxIn& input, const MapPrevTx& inputs) const
{
MapPrevTx::const_iterator mi = inputs.find(input.prevout.hash);
if (mi == inputs.end())
throw std::runtime_error("CTransaction::GetOutputFor() : prevout.hash not found");
const CTransaction& txPrev = (mi->second).second;
if (input.prevout.n >= txPrev.vout.size())
throw std::runtime_error("CTransaction::GetOutputFor() : prevout.n out of range");
return txPrev.vout[input.prevout.n];
}
int64_t CTransaction::GetValueIn(const MapPrevTx& inputs) const
{
if (IsCoinBase())
return 0;
int64_t nResult = 0;
for (unsigned int i = 0; i < vin.size(); i++)
{
nResult += GetOutputFor(vin[i], inputs).nValue;
}
return nResult;
}
unsigned int CTransaction::GetP2SHSigOpCount(const MapPrevTx& inputs) const
{
if (IsCoinBase())
return 0;
unsigned int nSigOps = 0;
for (unsigned int i = 0; i < vin.size(); i++)
{
const CTxOut& prevout = GetOutputFor(vin[i], inputs);
if (prevout.scriptPubKey.IsPayToScriptHash())
nSigOps += prevout.scriptPubKey.GetSigOpCount(vin[i].scriptSig);
}
return nSigOps;
}
bool CScriptCheck::operator()() const {
const CScript &scriptSig = ptxTo->vin[nIn].scriptSig;
if (!VerifyScript(scriptSig, scriptPubKey, *ptxTo, nIn, nFlags, nHashType))
return error("CScriptCheck() : %s VerifySignature failed", ptxTo->GetHash().ToString().substr(0,10).c_str());
return true;
}
bool VerifySignature(const CTransaction& txFrom, const CTransaction& txTo, unsigned int nIn, unsigned int flags, int nHashType)
{
return CScriptCheck(txFrom, txTo, nIn, flags, nHashType)();
}
bool CTransaction::ConnectInputs(CTxDB& txdb, MapPrevTx inputs, map<uint256, CTxIndex>& mapTestPool, const CDiskTxPos& posThisTx,
const CBlockIndex* pindexBlock, bool fBlock, bool fMiner, bool fScriptChecks, unsigned int flags, std::vector<CScriptCheck> *pvChecks)
{
// Take over previous transactions' spent pointers
// fBlock is true when this is called from AcceptBlock when a new best-block is added to the blockchain
// fMiner is true when called from the internal bitcoin miner
// ... both are false when called from CTransaction::AcceptToMemoryPool
if (!IsCoinBase())
{
int64_t nValueIn = 0;
int64_t nFees = 0;
for (unsigned int i = 0; i < vin.size(); i++)
{
COutPoint prevout = vin[i].prevout;
assert(inputs.count(prevout.hash) > 0);
CTxIndex& txindex = inputs[prevout.hash].first;
CTransaction& txPrev = inputs[prevout.hash].second;
if (prevout.n >= txPrev.vout.size() || prevout.n >= txindex.vSpent.size())
return DoS(100, error("ConnectInputs() : %s prevout.n out of range %d %" PRIszu " %" PRIszu " prev tx %s\n%s", GetHash().ToString().substr(0,10).c_str(), prevout.n, txPrev.vout.size(), txindex.vSpent.size(), prevout.hash.ToString().substr(0,10).c_str(), txPrev.ToString().c_str()));
// If prev is coinbase or coinstake, check that it's matured
if (txPrev.IsCoinBase() || txPrev.IsCoinStake())
for (const CBlockIndex* pindex = pindexBlock; pindex && pindexBlock->nHeight - pindex->nHeight < nCoinbaseMaturity; pindex = pindex->pprev)
if (pindex->nBlockPos == txindex.pos.nBlockPos && pindex->nFile == txindex.pos.nFile)
return error("ConnectInputs() : tried to spend %s at depth %d", txPrev.IsCoinBase() ? "coinbase" : "coinstake", pindexBlock->nHeight - pindex->nHeight);
// ppcoin: check transaction timestamp
if (txPrev.nTime > nTime)
return DoS(100, error("ConnectInputs() : transaction timestamp earlier than input transaction"));
// Check for negative or overflow input values
nValueIn += txPrev.vout[prevout.n].nValue;
if (!MoneyRange(txPrev.vout[prevout.n].nValue) || !MoneyRange(nValueIn))
return DoS(100, error("ConnectInputs() : txin values out of range"));
}
if (pvChecks)
pvChecks->reserve(vin.size());
// The first loop above does all the inexpensive checks.
// Only if ALL inputs pass do we perform expensive ECDSA signature checks.
// Helps prevent CPU exhaustion attacks.
for (unsigned int i = 0; i < vin.size(); i++)
{
COutPoint prevout = vin[i].prevout;
assert(inputs.count(prevout.hash) > 0);
CTxIndex& txindex = inputs[prevout.hash].first;
CTransaction& txPrev = inputs[prevout.hash].second;
// Check for conflicts (double-spend)
// This doesn't trigger the DoS code on purpose; if it did, it would make it easier
// for an attacker to attempt to split the network.
if (!txindex.vSpent[prevout.n].IsNull())
return fMiner ? false : error("ConnectInputs() : %s prev tx already used at %s", GetHash().ToString().substr(0,10).c_str(), txindex.vSpent[prevout.n].ToString().c_str());
// Skip ECDSA signature verification when connecting blocks (fBlock=true)
// before the last blockchain checkpoint. This is safe because block merkle hashes are
// still computed and checked, and any change will be caught at the next checkpoint.
if (fScriptChecks)
{
// Verify signature
CScriptCheck check(txPrev, *this, i, flags, 0);
if (pvChecks)
{
pvChecks->push_back(CScriptCheck());
check.swap(pvChecks->back());
}
else if (!check())
{
if (flags & STRICT_FLAGS)
{
// Don't trigger DoS code in case of STRICT_FLAGS caused failure.
CScriptCheck check(txPrev, *this, i, flags & ~STRICT_FLAGS, 0);
if (check())
return error("ConnectInputs() : %s strict VerifySignature failed", GetHash().ToString().substr(0,10).c_str());
}
return DoS(100,error("ConnectInputs() : %s VerifySignature failed", GetHash().ToString().substr(0,10).c_str()));
}
}
// Mark outpoints as spent
txindex.vSpent[prevout.n] = posThisTx;
// Write back
if (fBlock || fMiner)
{
mapTestPool[prevout.hash] = txindex;
}
}
if (IsCoinStake())
{
if (nTime > Checkpoints::GetLastCheckpointTime())
{
unsigned int nTxSize = GetSerializeSize(SER_NETWORK, PROTOCOL_VERSION);
// coin stake tx earns reward instead of paying fee
uint64_t nCoinAge;
if (!GetCoinAge(txdb, nCoinAge))
return error("ConnectInputs() : %s unable to get coin age for coinstake", GetHash().ToString().substr(0,10).c_str());
int64_t nReward = GetValueOut() - nValueIn;
int64_t nCalculatedReward = GetProofOfStakeReward(nCoinAge, pindexBlock->nBits, nTime) - GetMinFee(1, false, GMF_BLOCK, nTxSize) + CENT;
if (nReward > nCalculatedReward)
return DoS(100, error("ConnectInputs() : coinstake pays too much(actual=%" PRId64 " vs calculated=%" PRId64 ")", nReward, nCalculatedReward));
}
}
else
{
if (nValueIn < GetValueOut())
return DoS(100, error("ConnectInputs() : %s value in < value out", GetHash().ToString().substr(0,10).c_str()));
// Tally transaction fees
int64_t nTxFee = nValueIn - GetValueOut();
if (nTxFee < 0)
return DoS(100, error("ConnectInputs() : %s nTxFee < 0", GetHash().ToString().substr(0,10).c_str()));
nFees += nTxFee;
if (!MoneyRange(nFees))
return DoS(100, error("ConnectInputs() : nFees out of range"));
}
}
return true;
}
bool CTransaction::ClientConnectInputs()
{
if (IsCoinBase())
return false;
// Take over previous transactions' spent pointers
{
LOCK(mempool.cs);
int64_t nValueIn = 0;
for (unsigned int i = 0; i < vin.size(); i++)
{
// Get prev tx from single transactions in memory
COutPoint prevout = vin[i].prevout;
if (!mempool.exists(prevout.hash))
return false;
CTransaction& txPrev = mempool.lookup(prevout.hash);
if (prevout.n >= txPrev.vout.size())
return false;
// Verify signature
if (!VerifySignature(txPrev, *this, i, SCRIPT_VERIFY_NOCACHE | SCRIPT_VERIFY_P2SH, 0))
return error("ClientConnectInputs() : VerifySignature failed");
///// this is redundant with the mempool.mapNextTx stuff,
///// not sure which I want to get rid of
///// this has to go away now that posNext is gone
// // Check for conflicts
// if (!txPrev.vout[prevout.n].posNext.IsNull())
// return error("ConnectInputs() : prev tx already used");
//
// // Flag outpoints as used
// txPrev.vout[prevout.n].posNext = posThisTx;
nValueIn += txPrev.vout[prevout.n].nValue;
if (!MoneyRange(txPrev.vout[prevout.n].nValue) || !MoneyRange(nValueIn))
return error("ClientConnectInputs() : txin values out of range");
}
if (GetValueOut() > nValueIn)
return false;
}
return true;
}
bool CBlock::DisconnectBlock(CTxDB& txdb, CBlockIndex* pindex)
{
// Disconnect in reverse order
for (int i = vtx.size()-1; i >= 0; i--)
if (!vtx[i].DisconnectInputs(txdb))
return false;
// Update block index on disk without changing it in memory.
// The memory index structure will be changed after the db commits.
if (pindex->pprev)
{
CDiskBlockIndex blockindexPrev(pindex->pprev);
blockindexPrev.hashNext = 0;
if (!txdb.WriteBlockIndex(blockindexPrev))
return error("DisconnectBlock() : WriteBlockIndex failed");
}
// ppcoin: clean up wallet after disconnecting coinstake
BOOST_FOREACH(CTransaction& tx, vtx)
SyncWithWallets(tx, this, false, false);
return true;
}
static CCheckQueue<CScriptCheck> scriptcheckqueue(128);
void ThreadScriptCheck(void*) {
vnThreadsRunning[THREAD_SCRIPTCHECK]++;
RenameThread("CereiPayCoin-scriptch");
scriptcheckqueue.Thread();
vnThreadsRunning[THREAD_SCRIPTCHECK]--;
}
void ThreadScriptCheckQuit() {
scriptcheckqueue.Quit();
}
bool CBlock::ConnectBlock(CTxDB& txdb, CBlockIndex* pindex, bool fJustCheck)
{
// Check it again in case a previous version let a bad block in, but skip BlockSig checking
if (!CheckBlock(!fJustCheck, !fJustCheck, false))
return false;
// Do not allow blocks that contain transactions which 'overwrite' older transactions,
// unless those are already completely spent.
// If such overwrites are allowed, coinbases and transactions depending upon those
// can be duplicated to remove the ability to spend the first instance -- even after
// being sent to another address.
// See BIP30 and http://r6.ca/blog/20120206T005236Z.html for more information.
// This logic is not necessary for memory pool transactions, as AcceptToMemoryPool
// already refuses previously-known transaction ids entirely.
// This rule was originally applied all blocks whose timestamp was after March 15, 2012, 0:00 UTC.
// Now that the whole chain is irreversibly beyond that time it is applied to all blocks except the
// two in the chain that violate it. This prevents exploiting the issue against nodes in their
// initial block download.
bool fEnforceBIP30 = true; // Always active in CereiPayCoin
bool fScriptChecks = pindex->nHeight >= Checkpoints::GetTotalBlocksEstimate();
//// issue here: it doesn't know the version
unsigned int nTxPos;
if (fJustCheck)
// FetchInputs treats CDiskTxPos(1,1,1) as a special "refer to memorypool" indicator
// Since we're just checking the block and not actually connecting it, it might not (and probably shouldn't) be on the disk to get the transaction from
nTxPos = 1;
else
nTxPos = pindex->nBlockPos + ::GetSerializeSize(CBlock(), SER_DISK, CLIENT_VERSION) - (2 * GetSizeOfCompactSize(0)) + GetSizeOfCompactSize(vtx.size());
map<uint256, CTxIndex> mapQueuedChanges;
CCheckQueueControl<CScriptCheck> control(fScriptChecks && nScriptCheckThreads ? &scriptcheckqueue : NULL);
int64_t nFees = 0;
int64_t nValueIn = 0;
int64_t nValueOut = 0;
unsigned int nSigOps = 0;
BOOST_FOREACH(CTransaction& tx, vtx)
{
uint256 hashTx = tx.GetHash();
if (fEnforceBIP30) {
CTxIndex txindexOld;
if (txdb.ReadTxIndex(hashTx, txindexOld)) {
BOOST_FOREACH(CDiskTxPos &pos, txindexOld.vSpent)
if (pos.IsNull())
return false;
}
}
nSigOps += tx.GetLegacySigOpCount();
if (nSigOps > MAX_BLOCK_SIGOPS)
return DoS(100, error("ConnectBlock() : too many sigops"));
CDiskTxPos posThisTx(pindex->nFile, pindex->nBlockPos, nTxPos);
if (!fJustCheck)
nTxPos += ::GetSerializeSize(tx, SER_DISK, CLIENT_VERSION);
MapPrevTx mapInputs;
if (tx.IsCoinBase())
nValueOut += tx.GetValueOut();
else
{
bool fInvalid;
if (!tx.FetchInputs(txdb, mapQueuedChanges, true, false, mapInputs, fInvalid))
return false;
// Add in sigops done by pay-to-script-hash inputs;
// this is to prevent a "rogue miner" from creating
// an incredibly-expensive-to-validate block.
nSigOps += tx.GetP2SHSigOpCount(mapInputs);
if (nSigOps > MAX_BLOCK_SIGOPS)
return DoS(100, error("ConnectBlock() : too many sigops"));
int64_t nTxValueIn = tx.GetValueIn(mapInputs);
int64_t nTxValueOut = tx.GetValueOut();
nValueIn += nTxValueIn;
nValueOut += nTxValueOut;
if (!tx.IsCoinStake())
nFees += nTxValueIn - nTxValueOut;
std::vector<CScriptCheck> vChecks;
if (!tx.ConnectInputs(txdb, mapInputs, mapQueuedChanges, posThisTx, pindex, true, false, fScriptChecks, SCRIPT_VERIFY_NOCACHE | SCRIPT_VERIFY_P2SH, nScriptCheckThreads ? &vChecks : NULL))
return false;
control.Add(vChecks);
}
mapQueuedChanges[hashTx] = CTxIndex(posThisTx, tx.vout.size());
}
if (!control.Wait())
return DoS(100, false);
if (IsProofOfWork())
{
int64_t nBlockReward = GetProofOfWorkReward(nBits, nFees, pindex->pprev->nHeight + 1);
// Check coinbase reward
if (vtx[0].GetValueOut() > nBlockReward)
return error("CheckBlock() : coinbase reward exceeded (actual=%" PRId64 " vs calculated=%" PRId64 ")",
vtx[0].GetValueOut(),
nBlockReward);
}
// track money supply and mint amount info
pindex->nMint = nValueOut - nValueIn + nFees;
pindex->nMoneySupply = (pindex->pprev? pindex->pprev->nMoneySupply : 0) + nValueOut - nValueIn;
if (!txdb.WriteBlockIndex(CDiskBlockIndex(pindex)))
return error("Connect() : WriteBlockIndex for pindex failed");
// fees are not collected by proof-of-stake miners
// fees are destroyed to compensate the entire network
if (fDebug && IsProofOfStake() && GetBoolArg("-printcreation"))
printf("ConnectBlock() : destroy=%s nFees=%" PRId64 "\n", FormatMoney(nFees).c_str(), nFees);
if (fJustCheck)
return true;
// Write queued txindex changes
for (map<uint256, CTxIndex>::iterator mi = mapQueuedChanges.begin(); mi != mapQueuedChanges.end(); ++mi)
{
if (!txdb.UpdateTxIndex((*mi).first, (*mi).second))
return error("ConnectBlock() : UpdateTxIndex failed");
}
// Update block index on disk without changing it in memory.
// The memory index structure will be changed after the db commits.
if (pindex->pprev)
{
CDiskBlockIndex blockindexPrev(pindex->pprev);
blockindexPrev.hashNext = pindex->GetBlockHash();
if (!txdb.WriteBlockIndex(blockindexPrev))
return error("ConnectBlock() : WriteBlockIndex failed");
}
// Watch for transactions paying to me
BOOST_FOREACH(CTransaction& tx, vtx)
SyncWithWallets(tx, this, true);
return true;
}
bool static Reorganize(CTxDB& txdb, CBlockIndex* pindexNew)
{
printf("REORGANIZE\n");
// Find the fork
CBlockIndex* pfork = pindexBest;
CBlockIndex* plonger = pindexNew;
while (pfork != plonger)
{
while (plonger->nHeight > pfork->nHeight)
if (!(plonger = plonger->pprev))
return error("Reorganize() : plonger->pprev is null");
if (pfork == plonger)
break;
if (!(pfork = pfork->pprev))
return error("Reorganize() : pfork->pprev is null");
}
// List of what to disconnect
vector<CBlockIndex*> vDisconnect;
for (CBlockIndex* pindex = pindexBest; pindex != pfork; pindex = pindex->pprev)
vDisconnect.push_back(pindex);
// List of what to connect
vector<CBlockIndex*> vConnect;
for (CBlockIndex* pindex = pindexNew; pindex != pfork; pindex = pindex->pprev)
vConnect.push_back(pindex);
reverse(vConnect.begin(), vConnect.end());
printf("REORGANIZE: Disconnect %" PRIszu " blocks; %s..%s\n", vDisconnect.size(), pfork->GetBlockHash().ToString().substr(0,20).c_str(), pindexBest->GetBlockHash().ToString().substr(0,20).c_str());
printf("REORGANIZE: Connect %" PRIszu " blocks; %s..%s\n", vConnect.size(), pfork->GetBlockHash().ToString().substr(0,20).c_str(), pindexNew->GetBlockHash().ToString().substr(0,20).c_str());
// Disconnect shorter branch
vector<CTransaction> vResurrect;
BOOST_FOREACH(CBlockIndex* pindex, vDisconnect)
{
CBlock block;
if (!block.ReadFromDisk(pindex))
return error("Reorganize() : ReadFromDisk for disconnect failed");
if (!block.DisconnectBlock(txdb, pindex))
return error("Reorganize() : DisconnectBlock %s failed", pindex->GetBlockHash().ToString().substr(0,20).c_str());
// Queue memory transactions to resurrect
BOOST_FOREACH(const CTransaction& tx, block.vtx)
if (!(tx.IsCoinBase() || tx.IsCoinStake()))
vResurrect.push_back(tx);
}
// Connect longer branch
vector<CTransaction> vDelete;
for (unsigned int i = 0; i < vConnect.size(); i++)
{
CBlockIndex* pindex = vConnect[i];
CBlock block;
if (!block.ReadFromDisk(pindex))
return error("Reorganize() : ReadFromDisk for connect failed");
if (!block.ConnectBlock(txdb, pindex))
{
// Invalid block
return error("Reorganize() : ConnectBlock %s failed", pindex->GetBlockHash().ToString().substr(0,20).c_str());
}
// Queue memory transactions to delete
BOOST_FOREACH(const CTransaction& tx, block.vtx)
vDelete.push_back(tx);
}
if (!txdb.WriteHashBestChain(pindexNew->GetBlockHash()))
return error("Reorganize() : WriteHashBestChain failed");
// Make sure it's successfully written to disk before changing memory structure
if (!txdb.TxnCommit())
return error("Reorganize() : TxnCommit failed");
// Disconnect shorter branch
BOOST_FOREACH(CBlockIndex* pindex, vDisconnect)
if (pindex->pprev)
pindex->pprev->pnext = NULL;
// Connect longer branch
BOOST_FOREACH(CBlockIndex* pindex, vConnect)
if (pindex->pprev)
pindex->pprev->pnext = pindex;
// Resurrect memory transactions that were in the disconnected branch
BOOST_FOREACH(CTransaction& tx, vResurrect)
tx.AcceptToMemoryPool(txdb, false);
// Delete redundant memory transactions that are in the connected branch
BOOST_FOREACH(CTransaction& tx, vDelete)
mempool.remove(tx);
printf("REORGANIZE: done\n");
return true;
}
// Called from inside SetBestChain: attaches a block to the new best chain being built
bool CBlock::SetBestChainInner(CTxDB& txdb, CBlockIndex *pindexNew)
{
uint256 hash = GetHash();
// Adding to current best branch
if (!ConnectBlock(txdb, pindexNew) || !txdb.WriteHashBestChain(hash))
{
txdb.TxnAbort();
InvalidChainFound(pindexNew);
return false;
}
if (!txdb.TxnCommit())
return error("SetBestChain() : TxnCommit failed");
// Add to current best branch
pindexNew->pprev->pnext = pindexNew;
// Delete redundant memory transactions
BOOST_FOREACH(CTransaction& tx, vtx)
mempool.remove(tx);
return true;
}
bool CBlock::SetBestChain(CTxDB& txdb, CBlockIndex* pindexNew)
{
uint256 hash = GetHash();
if (!txdb.TxnBegin())
return error("SetBestChain() : TxnBegin failed");
if (pindexGenesisBlock == NULL && hash == (!fTestNet ? hashGenesisBlock : hashGenesisBlockTestNet))
{
txdb.WriteHashBestChain(hash);
if (!txdb.TxnCommit())
return error("SetBestChain() : TxnCommit failed");
pindexGenesisBlock = pindexNew;
}
else if (hashPrevBlock == hashBestChain)
{
if (!SetBestChainInner(txdb, pindexNew))
return error("SetBestChain() : SetBestChainInner failed");
}
else
{
// the first block in the new chain that will cause it to become the new best chain
CBlockIndex *pindexIntermediate = pindexNew;
// list of blocks that need to be connected afterwards
std::vector<CBlockIndex*> vpindexSecondary;
// Reorganize is costly in terms of db load, as it works in a single db transaction.
// Try to limit how much needs to be done inside
while (pindexIntermediate->pprev && pindexIntermediate->pprev->nChainTrust > pindexBest->nChainTrust)
{
vpindexSecondary.push_back(pindexIntermediate);
pindexIntermediate = pindexIntermediate->pprev;
}
if (!vpindexSecondary.empty())
printf("Postponing %" PRIszu " reconnects\n", vpindexSecondary.size());
// Switch to new best branch
if (!Reorganize(txdb, pindexIntermediate))
{
txdb.TxnAbort();
InvalidChainFound(pindexNew);
return error("SetBestChain() : Reorganize failed");
}
// Connect further blocks
BOOST_REVERSE_FOREACH(CBlockIndex *pindex, vpindexSecondary)
{
CBlock block;
if (!block.ReadFromDisk(pindex))
{
printf("SetBestChain() : ReadFromDisk failed\n");
break;
}
if (!txdb.TxnBegin()) {
printf("SetBestChain() : TxnBegin 2 failed\n");
break;
}
// errors now are not fatal, we still did a reorganisation to a new chain in a valid way
if (!block.SetBestChainInner(txdb, pindex))
break;
}
}
// Update best block in wallet (so we can detect restored wallets)
bool fIsInitialDownload = IsInitialBlockDownload();
if (!fIsInitialDownload)
{
const CBlockLocator locator(pindexNew);
::SetBestChain(locator);
}
// New best block
hashBestChain = hash;
pindexBest = pindexNew;
pblockindexFBBHLast = NULL;
nBestHeight = pindexBest->nHeight;
nBestChainTrust = pindexNew->nChainTrust;
nTimeBestReceived = GetTime();
nTransactionsUpdated++;
uint256 nBestBlockTrust = pindexBest->nHeight != 0 ? (pindexBest->nChainTrust - pindexBest->pprev->nChainTrust) : pindexBest->nChainTrust;
printf("SetBestChain: new best=%s height=%d trust=%s blocktrust=%" PRId64 " date=%s\n",
hashBestChain.ToString().substr(0,20).c_str(), nBestHeight,
CBigNum(nBestChainTrust).ToString().c_str(),
nBestBlockTrust.Get64(),
DateTimeStrFormat("%x %H:%M:%S", pindexBest->GetBlockTime()).c_str());
// Check the version of the last 100 blocks to see if we need to upgrade:
if (!fIsInitialDownload)
{
int nUpgraded = 0;
const CBlockIndex* pindex = pindexBest;
for (int i = 0; i < 100 && pindex != NULL; i++)
{
if (pindex->nVersion > CBlock::CURRENT_VERSION)
++nUpgraded;
pindex = pindex->pprev;
}
if (nUpgraded > 0)
printf("SetBestChain: %d of last 100 blocks above version %d\n", nUpgraded, CBlock::CURRENT_VERSION);
if (nUpgraded > 100/2)
// strMiscWarning is read by GetWarnings(), called by Qt and the JSON-RPC code to warn the user:
strMiscWarning = _("Warning: This version is obsolete, upgrade required!");
}
std::string strCmd = GetArg("-blocknotify", "");
if (!fIsInitialDownload && !strCmd.empty())
{
boost::replace_all(strCmd, "%s", hashBestChain.GetHex());
boost::thread t(runCommand, strCmd); // thread runs free
}
return true;
}
// ppcoin: total coin age spent in transaction, in the unit of coin-days.
// Only those coins meeting minimum age requirement counts. As those
// transactions not in main chain are not currently indexed so we
// might not find out about their coin age. Older transactions are
// guaranteed to be in main chain by sync-checkpoint. This rule is
// introduced to help nodes establish a consistent view of the coin
// age (trust score) of competing branches.
bool CTransaction::GetCoinAge(CTxDB& txdb, uint64_t& nCoinAge) const
{
CBigNum bnCentSecond = 0; // coin age in the unit of cent-seconds
nCoinAge = 0;
if (IsCoinBase())
return true;
BOOST_FOREACH(const CTxIn& txin, vin)
{
// First try finding the previous transaction in database
CTransaction txPrev;
CTxIndex txindex;
if (!txPrev.ReadFromDisk(txdb, txin.prevout, txindex))
continue; // previous transaction not in main chain
if (nTime < txPrev.nTime)
return false; // Transaction timestamp violation
// Read block header
CBlock block;
if (!block.ReadFromDisk(txindex.pos.nFile, txindex.pos.nBlockPos, false))
return false; // unable to read block of previous transaction
if (block.GetBlockTime() + nStakeMinAge > nTime)
continue; // only count coins meeting min age requirement
int64_t nValueIn = txPrev.vout[txin.prevout.n].nValue;
bnCentSecond += CBigNum(nValueIn) * (nTime-txPrev.nTime) / CENT;
if (fDebug && GetBoolArg("-printcoinage"))
printf("coin age nValueIn=%" PRId64 " nTimeDiff=%d bnCentSecond=%s\n", nValueIn, nTime - txPrev.nTime, bnCentSecond.ToString().c_str());
}
CBigNum bnCoinDay = bnCentSecond * CENT / COIN / nOneDay;
if (fDebug && GetBoolArg("-printcoinage"))
printf("coin age bnCoinDay=%s\n", bnCoinDay.ToString().c_str());
nCoinAge = bnCoinDay.getuint64();
return true;
}
// ppcoin: total coin age spent in block, in the unit of coin-days.
bool CBlock::GetCoinAge(uint64_t& nCoinAge) const
{
nCoinAge = 0;
CTxDB txdb("r");
BOOST_FOREACH(const CTransaction& tx, vtx)
{
uint64_t nTxCoinAge;
if (tx.GetCoinAge(txdb, nTxCoinAge))
nCoinAge += nTxCoinAge;
else
return false;
}
if (nCoinAge == 0) // block coin age minimum 1 coin-day
nCoinAge = 1;
if (fDebug && GetBoolArg("-printcoinage"))
printf("block coin age total nCoinDays=%" PRId64 "\n", nCoinAge);
return true;
}
bool CBlock::AddToBlockIndex(unsigned int nFile, unsigned int nBlockPos)
{
// Check for duplicate
uint256 hash = GetHash();
if (mapBlockIndex.count(hash))
return error("AddToBlockIndex() : %s already exists", hash.ToString().substr(0,20).c_str());
// Construct new block index object
CBlockIndex* pindexNew = new CBlockIndex(nFile, nBlockPos, *this);
if (!pindexNew)
return error("AddToBlockIndex() : new CBlockIndex failed");
pindexNew->phashBlock = &hash;
map<uint256, CBlockIndex*>::iterator miPrev = mapBlockIndex.find(hashPrevBlock);
if (miPrev != mapBlockIndex.end())
{
pindexNew->pprev = (*miPrev).second;
pindexNew->nHeight = pindexNew->pprev->nHeight + 1;
}
// ppcoin: compute chain trust score
pindexNew->nChainTrust = (pindexNew->pprev ? pindexNew->pprev->nChainTrust : 0) + pindexNew->GetBlockTrust();
// ppcoin: compute stake entropy bit for stake modifier
if (!pindexNew->SetStakeEntropyBit(GetStakeEntropyBit(pindexNew->nHeight)))
return error("AddToBlockIndex() : SetStakeEntropyBit() failed");
// ppcoin: record proof-of-stake hash value
if (pindexNew->IsProofOfStake())
{
if (!mapProofOfStake.count(hash))
return error("AddToBlockIndex() : hashProofOfStake not found in map");
pindexNew->hashProofOfStake = mapProofOfStake[hash];
}
// ppcoin: compute stake modifier
uint64_t nStakeModifier = 0;
bool fGeneratedStakeModifier = false;
if (!ComputeNextStakeModifier(pindexNew, nStakeModifier, fGeneratedStakeModifier))
return error("AddToBlockIndex() : ComputeNextStakeModifier() failed");
pindexNew->SetStakeModifier(nStakeModifier, fGeneratedStakeModifier);
pindexNew->nStakeModifierChecksum = GetStakeModifierChecksum(pindexNew);
if (!CheckStakeModifierCheckpoints(pindexNew->nHeight, pindexNew->nStakeModifierChecksum))
return error("AddToBlockIndex() : Rejected by stake modifier checkpoint height=%d, modifier=0x%016" PRIx64, pindexNew->nHeight, nStakeModifier);
// Add to mapBlockIndex
map<uint256, CBlockIndex*>::iterator mi = mapBlockIndex.insert(make_pair(hash, pindexNew)).first;
if (pindexNew->IsProofOfStake())
setStakeSeen.insert(make_pair(pindexNew->prevoutStake, pindexNew->nStakeTime));
pindexNew->phashBlock = &((*mi).first);
// Write to disk block index
CTxDB txdb;
if (!txdb.TxnBegin())
return false;
txdb.WriteBlockIndex(CDiskBlockIndex(pindexNew));
if (!txdb.TxnCommit())
return false;
// New best
if (pindexNew->nChainTrust > nBestChainTrust)
if (!SetBestChain(txdb, pindexNew))
return false;
if (pindexNew == pindexBest)
{
// Notify UI to display prev block's coinbase if it was ours
static uint256 hashPrevBestCoinBase;
UpdatedTransaction(hashPrevBestCoinBase);
hashPrevBestCoinBase = vtx[0].GetHash();
}
static int8_t counter = 0;
if( (++counter & 0x0F) == 0 || !IsInitialBlockDownload()) // repaint every 16 blocks if not in initial block download
uiInterface.NotifyBlocksChanged();
return true;
}
bool CBlock::CheckBlock(bool fCheckPOW, bool fCheckMerkleRoot, bool fCheckSig) const
{
// These are checks that are independent of context
// that can be verified before saving an orphan block.
set<uint256> uniqueTx; // tx hashes
unsigned int nSigOps = 0; // total sigops
// Size limits
if (vtx.empty() || vtx.size() > MAX_BLOCK_SIZE || ::GetSerializeSize(*this, SER_NETWORK, PROTOCOL_VERSION) > MAX_BLOCK_SIZE)
return DoS(100, error("CheckBlock() : size limits failed"));
bool fProofOfStake = IsProofOfStake();
// First transaction must be coinbase, the rest must not be
if (!vtx[0].IsCoinBase())
return DoS(100, error("CheckBlock() : first tx is not coinbase"));
if (!vtx[0].CheckTransaction())
return DoS(vtx[0].nDoS, error("CheckBlock() : CheckTransaction failed on coinbase"));
uniqueTx.insert(vtx[0].GetHash());
nSigOps += vtx[0].GetLegacySigOpCount();
if (fProofOfStake)
{
// Proof-of-STake related checkings. Note that we know here that 1st transactions is coinstake. We don't need
// check the type of 1st transaction because it's performed earlier by IsProofOfStake()
// nNonce must be zero for proof-of-stake blocks
if (nNonce != 0)
return DoS(100, error("CheckBlock() : non-zero nonce in proof-of-stake block"));
// Coinbase output should be empty if proof-of-stake block
if (vtx[0].vout.size() != 1 || !vtx[0].vout[0].IsEmpty())
return DoS(100, error("CheckBlock() : coinbase output not empty for proof-of-stake block"));
// Check coinstake timestamp
if (GetBlockTime() != (int64_t)vtx[1].nTime)
return DoS(50, error("CheckBlock() : coinstake timestamp violation nTimeBlock=%" PRId64 " nTimeTx=%u", GetBlockTime(), vtx[1].nTime));
// CereiPayCoin: check proof-of-stake block signature
if (fCheckSig && !CheckBlockSignature())
return DoS(100, error("CheckBlock() : bad proof-of-stake block signature"));
if (!vtx[1].CheckTransaction())
return DoS(vtx[1].nDoS, error("CheckBlock() : CheckTransaction failed on coinstake"));
uniqueTx.insert(vtx[1].GetHash());
nSigOps += vtx[1].GetLegacySigOpCount();
}
else
{
// Check proof of work matches claimed amount
if (fCheckPOW && !CheckProofOfWork(GetHash(), nBits))
return DoS(50, error("CheckBlock() : proof of work failed"));
// Check timestamp
if (GetBlockTime() > FutureDrift(GetAdjustedTime()))
return error("CheckBlock() : block timestamp too far in the future");
// Check coinbase timestamp
if (GetBlockTime() < PastDrift((int64_t)vtx[0].nTime))
return DoS(50, error("CheckBlock() : coinbase timestamp is too late"));
}
// Iterate all transactions starting from second for proof-of-stake block
// or first for proof-of-work block
for (unsigned int i = fProofOfStake ? 2 : 1; i < vtx.size(); i++)
{
const CTransaction& tx = vtx[i];
// Reject coinbase transactions at non-zero index
if (tx.IsCoinBase())
return DoS(100, error("CheckBlock() : coinbase at wrong index"));
// Reject coinstake transactions at index != 1
if (tx.IsCoinStake())
return DoS(100, error("CheckBlock() : coinstake at wrong index"));
// Check transaction timestamp
if (GetBlockTime() < (int64_t)tx.nTime)
return DoS(50, error("CheckBlock() : block timestamp earlier than transaction timestamp"));
// Check transaction consistency
if (!tx.CheckTransaction())
return DoS(tx.nDoS, error("CheckBlock() : CheckTransaction failed"));
// Add transaction hash into list of unique transaction IDs
uniqueTx.insert(tx.GetHash());
// Calculate sigops count
nSigOps += tx.GetLegacySigOpCount();
}
// Check for duplicate txids. This is caught by ConnectInputs(),
// but catching it earlier avoids a potential DoS attack:
if (uniqueTx.size() != vtx.size())
return DoS(100, error("CheckBlock() : duplicate transaction"));
// Reject block if validation would consume too much resources.
if (nSigOps > MAX_BLOCK_SIGOPS)
return DoS(100, error("CheckBlock() : out-of-bounds SigOpCount"));
// Check merkle root
if (fCheckMerkleRoot && hashMerkleRoot != BuildMerkleTree())
return DoS(100, error("CheckBlock() : hashMerkleRoot mismatch"));
return true;
}
bool CBlock::AcceptBlock()
{
// Check for duplicate
uint256 hash = GetHash();
if (mapBlockIndex.count(hash))
return error("AcceptBlock() : block already in mapBlockIndex");
// Get prev block index
map<uint256, CBlockIndex*>::iterator mi = mapBlockIndex.find(hashPrevBlock);
if (mi == mapBlockIndex.end())
return DoS(10, error("AcceptBlock() : prev block not found"));
CBlockIndex* pindexPrev = (*mi).second;
int nHeight = pindexPrev->nHeight+1;
if (IsProofOfWork() && nHeight > LAST_POW_BLOCK)
return DoS(100, error("AcceptBlock() : reject proof-of-work at height %d", nHeight));
// Check proof-of-work or proof-of-stake
if (nBits != GetNextTargetRequired(pindexPrev, IsProofOfStake()))
return DoS(100, error("AcceptBlock() : incorrect %s", IsProofOfWork() ? "proof-of-work" : "proof-of-stake"));
int64_t nMedianTimePast = pindexPrev->GetMedianTimePast();
int64_t nMaxOffset = 4 * 86400; // Four days
// Check timestamp against prev
if (GetBlockTime() <= nMedianTimePast || FutureDrift(GetBlockTime()) < pindexPrev->GetBlockTime())
return error("AcceptBlock() : block's timestamp is too early");
// nevertry 2017-02-01
/*
// Don't accept blocks with future timestamps
if (pindexPrev->nHeight > 50000 && nMedianTimePast + nMaxOffset < GetBlockTime())
return error("AcceptBlock() : block's timestamp is too far in the future");
*/
// Check that all transactions are finalized
BOOST_FOREACH(const CTransaction& tx, vtx)
if (!tx.IsFinal(nHeight, GetBlockTime()))
return DoS(10, error("AcceptBlock() : contains a non-final transaction"));
// Check that the block chain matches the known block chain up to a checkpoint
if (!Checkpoints::CheckHardened(nHeight, hash))
return DoS(100, error("AcceptBlock() : rejected by hardened checkpoint lock-in at %d", nHeight));
bool cpSatisfies = Checkpoints::CheckSync(hash, pindexPrev);
// Check that the block satisfies synchronized checkpoint
if (CheckpointsMode == Checkpoints::STRICT && !cpSatisfies)
return error("AcceptBlock() : rejected by synchronized checkpoint");
if (CheckpointsMode == Checkpoints::ADVISORY && !cpSatisfies)
strMiscWarning = _("WARNING: syncronized checkpoint violation detected, but skipped!");
// Enforce rule that the coinbase starts with serialized block height
CScript expect = CScript() << nHeight;
if (vtx[0].vin[0].scriptSig.size() < expect.size() ||
!std::equal(expect.begin(), expect.end(), vtx[0].vin[0].scriptSig.begin()))
return DoS(100, error("AcceptBlock() : block height mismatch in coinbase"));
// Write block to history file
if (!CheckDiskSpace(::GetSerializeSize(*this, SER_DISK, CLIENT_VERSION)))
return error("AcceptBlock() : out of disk space");
unsigned int nFile = std::numeric_limits<unsigned int>::max();
unsigned int nBlockPos = 0;
if (!WriteToDisk(nFile, nBlockPos))
return error("AcceptBlock() : WriteToDisk failed");
if (!AddToBlockIndex(nFile, nBlockPos))
return error("AcceptBlock() : AddToBlockIndex failed");
// Relay inventory, but don't relay old inventory during initial block download
int nBlockEstimate = Checkpoints::GetTotalBlocksEstimate();
if (hashBestChain == hash)
{
LOCK(cs_vNodes);
BOOST_FOREACH(CNode* pnode, vNodes)
if (nBestHeight > (pnode->nStartingHeight != -1 ? pnode->nStartingHeight - 2000 : nBlockEstimate))
pnode->PushInventory(CInv(MSG_BLOCK, hash));
}
// ppcoin: check pending sync-checkpoint
Checkpoints::AcceptPendingSyncCheckpoint();
return true;
}
uint256 CBlockIndex::GetBlockTrust() const
{
CBigNum bnTarget;
bnTarget.SetCompact(nBits);
if (bnTarget <= 0)
return 0;
// Return 1 for the first 12 blocks
if (pprev == NULL || pprev->nHeight < 12)
return 1;
const CBlockIndex* currentIndex = pprev;
if(IsProofOfStake())
{
CBigNum bnNewTrust = (CBigNum(1)<<256) / (bnTarget+1);
// Return 1/3 of score if parent block is not the PoW block
if (!pprev->IsProofOfWork())
return (bnNewTrust / 3).getuint256();
int nPoWCount = 0;
// Check last 12 blocks type
while (pprev->nHeight - currentIndex->nHeight < 12)
{
if (currentIndex->IsProofOfWork())
nPoWCount++;
currentIndex = currentIndex->pprev;
}
// Return 1/3 of score if less than 3 PoW blocks found
if (nPoWCount < 3)
return (bnNewTrust / 3).getuint256();
return bnNewTrust.getuint256();
}
else
{
// Calculate work amount for block
CBigNum bnPoWTrust = CBigNum(nPoWBase) / (bnTarget+1);
// Set nPowTrust to 1 if PoW difficulty is too low
if (bnPoWTrust < 1)
bnPoWTrust = 1;
CBigNum bnLastBlockTrust = CBigNum(pprev->nChainTrust - pprev->pprev->nChainTrust);
// Return nPoWTrust + 2/3 of previous block score if two parent blocks are not PoS blocks
if (!(pprev->IsProofOfStake() && pprev->pprev->IsProofOfStake()))
return (bnPoWTrust + 2 * bnLastBlockTrust / 3).getuint256();
int nPoSCount = 0;
// Check last 12 blocks type
while (pprev->nHeight - currentIndex->nHeight < 12)
{
if (currentIndex->IsProofOfStake())
nPoSCount++;
currentIndex = currentIndex->pprev;
}
// Return nPoWTrust + 2/3 of previous block score if less than 7 PoS blocks found
if (nPoSCount < 7)
return (bnPoWTrust + 2 * bnLastBlockTrust / 3).getuint256();
bnTarget.SetCompact(pprev->nBits);
if (bnTarget <= 0)
return 0;
CBigNum bnNewTrust = (CBigNum(1)<<256) / (bnTarget+1);
// Return nPoWTrust + full trust score for previous block nBits
return (bnPoWTrust + bnNewTrust).getuint256();
}
}
bool CBlockIndex::IsSuperMajority(int minVersion, const CBlockIndex* pstart, unsigned int nRequired, unsigned int nToCheck)
{
unsigned int nFound = 0;
for (unsigned int i = 0; i < nToCheck && nFound < nRequired && pstart != NULL; i++)
{
if (pstart->nVersion >= minVersion)
++nFound;
pstart = pstart->pprev;
}
return (nFound >= nRequired);
}
bool static ReserealizeBlockSignature(CBlock* pblock)
{
if (pblock->IsProofOfWork())
{
pblock->vchBlockSig.clear();
return true;
}
return CKey::ReserealizeSignature(pblock->vchBlockSig);
}
bool static IsCanonicalBlockSignature(CBlock* pblock)
{
if (pblock->IsProofOfWork())
return pblock->vchBlockSig.empty();
return IsDERSignature(pblock->vchBlockSig);
}
bool ProcessBlock(CNode* pfrom, CBlock* pblock)
{
// Check for duplicate
uint256 hash = pblock->GetHash();
if (mapBlockIndex.count(hash))
return error("ProcessBlock() : already have block %d %s", mapBlockIndex[hash]->nHeight, hash.ToString().substr(0,20).c_str());
if (mapOrphanBlocks.count(hash))
return error("ProcessBlock() : already have block (orphan) %s", hash.ToString().substr(0,20).c_str());
// Check proof-of-stake
// Limited duplicity on stake: prevents block flood attack
// Duplicate stake allowed only when there is orphan child block
if (pblock->IsProofOfStake() && setStakeSeen.count(pblock->GetProofOfStake()) && !mapOrphanBlocksByPrev.count(hash) && !Checkpoints::WantedByPendingSyncCheckpoint(hash))
return error("ProcessBlock() : duplicate proof-of-stake (%s, %d) for block %s", pblock->GetProofOfStake().first.ToString().c_str(), pblock->GetProofOfStake().second, hash.ToString().c_str());
// Strip the garbage from newly received blocks, if we found some
if (!IsCanonicalBlockSignature(pblock)) {
if (!ReserealizeBlockSignature(pblock))
printf("WARNING: ProcessBlock() : ReserealizeBlockSignature FAILED\n");
}
// Preliminary checks
if (!pblock->CheckBlock(true, true, (pblock->nTime > Checkpoints::GetLastCheckpointTime())))
return error("ProcessBlock() : CheckBlock FAILED");
// ppcoin: verify hash target and signature of coinstake tx
if (pblock->IsProofOfStake())
{
uint256 hashProofOfStake = 0, targetProofOfStake = 0;
if (!CheckProofOfStake(pblock->vtx[1], pblock->nBits, hashProofOfStake, targetProofOfStake))
{
printf("WARNING: ProcessBlock(): check proof-of-stake failed for block %s\n", hash.ToString().c_str());
return false; // do not error here as we expect this during initial block download
}
if (!mapProofOfStake.count(hash)) // add to mapProofOfStake
mapProofOfStake.insert(make_pair(hash, hashProofOfStake));
}
CBlockIndex* pcheckpoint = Checkpoints::GetLastSyncCheckpoint();
if (pcheckpoint && pblock->hashPrevBlock != hashBestChain && !Checkpoints::WantedByPendingSyncCheckpoint(hash))
{
// Extra checks to prevent "fill up memory by spamming with bogus blocks"
int64_t deltaTime = pblock->GetBlockTime() - pcheckpoint->nTime;
CBigNum bnNewBlock;
bnNewBlock.SetCompact(pblock->nBits);
CBigNum bnRequired;
if (pblock->IsProofOfStake())
bnRequired.SetCompact(ComputeMinStake(GetLastBlockIndex(pcheckpoint, true)->nBits, deltaTime, pblock->nTime));
else
bnRequired.SetCompact(ComputeMinWork(GetLastBlockIndex(pcheckpoint, false)->nBits, deltaTime));
if (bnNewBlock > bnRequired)
{
if (pfrom)
pfrom->Misbehaving(100);
return error("ProcessBlock() : block with too little %s", pblock->IsProofOfStake()? "proof-of-stake" : "proof-of-work");
}
}
// ppcoin: ask for pending sync-checkpoint if any
if (!IsInitialBlockDownload())
Checkpoints::AskForPendingSyncCheckpoint(pfrom);
// If don't already have its previous block, shunt it off to holding area until we get it
if (!mapBlockIndex.count(pblock->hashPrevBlock))
{
printf("ProcessBlock: ORPHAN BLOCK, prev=%s\n", pblock->hashPrevBlock.ToString().substr(0,20).c_str());
// ppcoin: check proof-of-stake
if (pblock->IsProofOfStake())
{
// Limited duplicity on stake: prevents block flood attack
// Duplicate stake allowed only when there is orphan child block
if (setStakeSeenOrphan.count(pblock->GetProofOfStake()) && !mapOrphanBlocksByPrev.count(hash) && !Checkpoints::WantedByPendingSyncCheckpoint(hash))
return error("ProcessBlock() : duplicate proof-of-stake (%s, %d) for orphan block %s", pblock->GetProofOfStake().first.ToString().c_str(), pblock->GetProofOfStake().second, hash.ToString().c_str());
else
setStakeSeenOrphan.insert(pblock->GetProofOfStake());
}
CBlock* pblock2 = new CBlock(*pblock);
mapOrphanBlocks.insert(make_pair(hash, pblock2));
mapOrphanBlocksByPrev.insert(make_pair(pblock2->hashPrevBlock, pblock2));
// Ask this guy to fill in what we're missing
if (pfrom)
{
pfrom->PushGetBlocks(pindexBest, GetOrphanRoot(pblock2));
// ppcoin: getblocks may not obtain the ancestor block rejected
// earlier by duplicate-stake check so we ask for it again directly
if (!IsInitialBlockDownload())
pfrom->AskFor(CInv(MSG_BLOCK, WantedByOrphan(pblock2)));
}
return true;
}
// Store to disk
if (!pblock->AcceptBlock())
return error("ProcessBlock() : AcceptBlock FAILED");
// Recursively process any orphan blocks that depended on this one
vector<uint256> vWorkQueue;
vWorkQueue.push_back(hash);
for (unsigned int i = 0; i < vWorkQueue.size(); i++)
{
uint256 hashPrev = vWorkQueue[i];
for (multimap<uint256, CBlock*>::iterator mi = mapOrphanBlocksByPrev.lower_bound(hashPrev);
mi != mapOrphanBlocksByPrev.upper_bound(hashPrev);
++mi)
{
CBlock* pblockOrphan = (*mi).second;
if (pblockOrphan->AcceptBlock())
vWorkQueue.push_back(pblockOrphan->GetHash());
mapOrphanBlocks.erase(pblockOrphan->GetHash());
setStakeSeenOrphan.erase(pblockOrphan->GetProofOfStake());
delete pblockOrphan;
}
mapOrphanBlocksByPrev.erase(hashPrev);
}
printf("ProcessBlock: ACCEPTED\n");
// ppcoin: if responsible for sync-checkpoint send it
if (pfrom && !CSyncCheckpoint::strMasterPrivKey.empty())
Checkpoints::SendSyncCheckpoint(Checkpoints::AutoSelectSyncCheckpoint());
return true;
}
// ppcoin: check block signature
bool CBlock::CheckBlockSignature() const
{
if (vchBlockSig.empty())
return false;
txnouttype whichType;
vector<valtype> vSolutions;
if (!Solver(vtx[1].vout[1].scriptPubKey, whichType, vSolutions))
return false;
if (whichType == TX_PUBKEY)
{
valtype& vchPubKey = vSolutions[0];
CKey key;
if (!key.SetPubKey(vchPubKey))
return false;
return key.Verify(GetHash(), vchBlockSig);
}
return false;
}
bool CheckDiskSpace(uint64_t nAdditionalBytes)
{
uint64_t nFreeBytesAvailable = filesystem::space(GetDataDir()).available;
// Check for nMinDiskSpace bytes (currently 50MB)
if (nFreeBytesAvailable < nMinDiskSpace + nAdditionalBytes)
{
fShutdown = true;
string strMessage = _("Warning: Disk space is low!");
strMiscWarning = strMessage;
printf("*** %s\n", strMessage.c_str());
uiInterface.ThreadSafeMessageBox(strMessage, "CereiPayCoin", CClientUIInterface::OK | CClientUIInterface::ICON_EXCLAMATION | CClientUIInterface::MODAL);
StartShutdown();
return false;
}
return true;
}
static filesystem::path BlockFilePath(unsigned int nFile)
{
string strBlockFn = strprintf("blk%04u.dat", nFile);
return GetDataDir() / strBlockFn;
}
FILE* OpenBlockFile(unsigned int nFile, unsigned int nBlockPos, const char* pszMode)
{
if ((nFile < 1) || (nFile == std::numeric_limits<uint32_t>::max()))
return NULL;
FILE* file = fopen(BlockFilePath(nFile).string().c_str(), pszMode);
if (!file)
return NULL;
if (nBlockPos != 0 && !strchr(pszMode, 'a') && !strchr(pszMode, 'w'))
{
if (fseek(file, nBlockPos, SEEK_SET) != 0)
{
fclose(file);
return NULL;
}
}
return file;
}
static unsigned int nCurrentBlockFile = 1;
FILE* AppendBlockFile(unsigned int& nFileRet)
{
nFileRet = 0;
while (true)
{
FILE* file = OpenBlockFile(nCurrentBlockFile, 0, "ab");
if (!file)
return NULL;
if (fseek(file, 0, SEEK_END) != 0)
return NULL;
// FAT32 file size max 4GB, fseek and ftell max 2GB, so we must stay under 2GB
if (ftell(file) < (long)(0x7F000000 - MAX_SIZE))
{
nFileRet = nCurrentBlockFile;
return file;
}
fclose(file);
nCurrentBlockFile++;
}
}
void UnloadBlockIndex()
{
mapBlockIndex.clear();
setStakeSeen.clear();
pindexGenesisBlock = NULL;
nBestHeight = 0;
nBestChainTrust = 0;
nBestInvalidTrust = 0;
hashBestChain = 0;
pindexBest = NULL;
}
bool LoadBlockIndex(bool fAllowNew)
{
if (fTestNet)
{
pchMessageStart[0] = 0xcd;
pchMessageStart[1] = 0xf2;
pchMessageStart[2] = 0xc0;
pchMessageStart[3] = 0xef;
bnProofOfWorkLimit = bnProofOfWorkLimitTestNet; // 16 bits PoW target limit for testnet
nStakeMinAge = 2 * nOneHour; // test net min age is 2 hours
nModifierInterval = 20 * 60; // test modifier interval is 20 minutes
nCoinbaseMaturity = 10; // test maturity is 10 blocks
nStakeTargetSpacing = 5 * 60; // test block spacing is 5 minutes
}
//
// Load block index
//
CTxDB txdb("cr+");
if (!txdb.LoadBlockIndex())
return false;
//
// Init with genesis block
//
if (mapBlockIndex.empty())
{
if (!fAllowNew)
return false;
const char* pszTimestamp = "CPC Genesis";
CTransaction txNew;
txNew.nTime = 1475866414;
txNew.vin.resize(1);
txNew.vout.resize(1);
txNew.vin[0].scriptSig = CScript() << 486604799 << CBigNum(9999) << vector<unsigned char>((const unsigned char*)pszTimestamp, (const unsigned char*)pszTimestamp + strlen(pszTimestamp));
txNew.vout[0].SetEmpty();
CBlock block;
block.vtx.push_back(txNew);
block.hashPrevBlock = 0;
block.hashMerkleRoot = block.BuildMerkleTree();
block.nVersion = 1;
block.nTime = 1475866415;
block.nBits = bnProofOfWorkLimit.GetCompact();
block.nNonce = 2196978; // !fTestNet ? 1575379 : 46534;
block.print();
//// debug print
assert(block.hashMerkleRoot == uint256("0xd6591154fa09f2199e8f49851dcd218cf2a8bcd3c072dfe031918dfebb85cba5"));
assert(block.GetHash() == (!fTestNet ? hashGenesisBlock : hashGenesisBlockTestNet));
assert(block.CheckBlock());
// Start new block file
unsigned int nFile;
unsigned int nBlockPos;
if (!block.WriteToDisk(nFile, nBlockPos))
return error("LoadBlockIndex() : writing genesis block to disk failed");
if (!block.AddToBlockIndex(nFile, nBlockPos))
return error("LoadBlockIndex() : genesis block not accepted");
// initialize synchronized checkpoint
if (!Checkpoints::WriteSyncCheckpoint((!fTestNet ? hashGenesisBlock : hashGenesisBlockTestNet)))
return error("LoadBlockIndex() : failed to init sync checkpoint");
// upgrade time set to zero if txdb initialized
{
if (!txdb.WriteModifierUpgradeTime(0))
return error("LoadBlockIndex() : failed to init upgrade info");
printf(" Upgrade Info: ModifierUpgradeTime txdb initialization\n");
}
}
{
CTxDB txdb("r+");
string strPubKey = "";
if (!txdb.ReadCheckpointPubKey(strPubKey) || strPubKey != CSyncCheckpoint::strMasterPubKey)
{
// write checkpoint master key to db
txdb.TxnBegin();
if (!txdb.WriteCheckpointPubKey(CSyncCheckpoint::strMasterPubKey))
return error("LoadBlockIndex() : failed to write new checkpoint master key to db");
if (!txdb.TxnCommit())
return error("LoadBlockIndex() : failed to commit new checkpoint master key to db");
if ((!fTestNet) && !Checkpoints::ResetSyncCheckpoint())
return error("LoadBlockIndex() : failed to reset sync-checkpoint");
}
// upgrade time set to zero if blocktreedb initialized
if (txdb.ReadModifierUpgradeTime(nModifierUpgradeTime))
{
if (nModifierUpgradeTime)
printf(" Upgrade Info: blocktreedb upgrade detected at timestamp %d\n", nModifierUpgradeTime);
else
printf(" Upgrade Info: no blocktreedb upgrade detected.\n");
}
else
{
nModifierUpgradeTime = GetTime();
printf(" Upgrade Info: upgrading blocktreedb at timestamp %u\n", nModifierUpgradeTime);
if (!txdb.WriteModifierUpgradeTime(nModifierUpgradeTime))
return error("LoadBlockIndex() : failed to write upgrade info");
}
#ifndef USE_LEVELDB
txdb.Close();
#endif
}
return true;
}
void PrintBlockTree()
{
// pre-compute tree structure
map<CBlockIndex*, vector<CBlockIndex*> > mapNext;
for (map<uint256, CBlockIndex*>::iterator mi = mapBlockIndex.begin(); mi != mapBlockIndex.end(); ++mi)
{
CBlockIndex* pindex = (*mi).second;
mapNext[pindex->pprev].push_back(pindex);
// test
//while (rand() % 3 == 0)
// mapNext[pindex->pprev].push_back(pindex);
}
vector<pair<int, CBlockIndex*> > vStack;
vStack.push_back(make_pair(0, pindexGenesisBlock));
int nPrevCol = 0;
while (!vStack.empty())
{
int nCol = vStack.back().first;
CBlockIndex* pindex = vStack.back().second;
vStack.pop_back();
// print split or gap
if (nCol > nPrevCol)
{
for (int i = 0; i < nCol-1; i++)
printf("| ");
printf("|\\\n");
}
else if (nCol < nPrevCol)
{
for (int i = 0; i < nCol; i++)
printf("| ");
printf("|\n");
}
nPrevCol = nCol;
// print columns
for (int i = 0; i < nCol; i++)
printf("| ");
// print item
CBlock block;
block.ReadFromDisk(pindex);
printf("%d (%u,%u) %s %08x %s mint %7s tx %" PRIszu "",
pindex->nHeight,
pindex->nFile,
pindex->nBlockPos,
block.GetHash().ToString().c_str(),
block.nBits,
DateTimeStrFormat("%x %H:%M:%S", block.GetBlockTime()).c_str(),
FormatMoney(pindex->nMint).c_str(),
block.vtx.size());
PrintWallets(block);
// put the main time-chain first
vector<CBlockIndex*>& vNext = mapNext[pindex];
for (unsigned int i = 0; i < vNext.size(); i++)
{
if (vNext[i]->pnext)
{
swap(vNext[0], vNext[i]);
break;
}
}
// iterate children
for (unsigned int i = 0; i < vNext.size(); i++)
vStack.push_back(make_pair(nCol+i, vNext[i]));
}
}
bool LoadExternalBlockFile(FILE* fileIn)
{
int64_t nStart = GetTimeMillis();
int nLoaded = 0;
{
LOCK(cs_main);
try {
CAutoFile blkdat(fileIn, SER_DISK, CLIENT_VERSION);
unsigned int nPos = 0;
while (nPos != std::numeric_limits<uint32_t>::max() && blkdat.good() && !fRequestShutdown)
{
unsigned char pchData[65536];
do {
fseek(blkdat, nPos, SEEK_SET);
int nRead = fread(pchData, 1, sizeof(pchData), blkdat);
if (nRead <= 8)
{
nPos = std::numeric_limits<uint32_t>::max();
break;
}
void* nFind = memchr(pchData, pchMessageStart[0], nRead+1-sizeof(pchMessageStart));
if (nFind)
{
if (memcmp(nFind, pchMessageStart, sizeof(pchMessageStart))==0)
{
nPos += ((unsigned char*)nFind - pchData) + sizeof(pchMessageStart);
break;
}
nPos += ((unsigned char*)nFind - pchData) + 1;
}
else
nPos += sizeof(pchData) - sizeof(pchMessageStart) + 1;
} while(!fRequestShutdown);
if (nPos == std::numeric_limits<uint32_t>::max())
break;
fseek(blkdat, nPos, SEEK_SET);
unsigned int nSize;
blkdat >> nSize;
if (nSize > 0 && nSize <= MAX_BLOCK_SIZE)
{
CBlock block;
blkdat >> block;
if (ProcessBlock(NULL,&block))
{
nLoaded++;
nPos += 4 + nSize;
}
}
}
}
catch (const std::exception&) {
printf("%s() : Deserialize or I/O error caught during load\n",
BOOST_CURRENT_FUNCTION);
}
}
printf("Loaded %i blocks from external file in %" PRId64 "ms\n", nLoaded, GetTimeMillis() - nStart);
return nLoaded > 0;
}
//////////////////////////////////////////////////////////////////////////////
//
// CAlert
//
extern map<uint256, CAlert> mapAlerts;
extern CCriticalSection cs_mapAlerts;
string GetWarnings(string strFor)
{
int nPriority = 0;
string strStatusBar;
string strRPC;
if (GetBoolArg("-testsafemode"))
strRPC = "test";
// Misc warnings like out of disk space and clock is wrong
if (strMiscWarning != "")
{
nPriority = 1000;
strStatusBar = strMiscWarning;
}
// if detected unmet upgrade requirement enter safe mode
// Note: Modifier upgrade requires blockchain redownload if past protocol switch
if (IsFixedModifierInterval(nModifierUpgradeTime + nOneDay)) // 1 day margin
{
nPriority = 5000;
strStatusBar = strRPC = "WARNING: Blockchain redownload required approaching or past v.0.4.4.6u4 upgrade deadline.";
}
// if detected invalid checkpoint enter safe mode
if (Checkpoints::hashInvalidCheckpoint != 0)
{
nPriority = 3000;
strStatusBar = strRPC = _("WARNING: Invalid checkpoint found! Displayed transactions may not be correct! You may need to upgrade, or notify developers.");
}
// Alerts
{
LOCK(cs_mapAlerts);
BOOST_FOREACH(PAIRTYPE(const uint256, CAlert)& item, mapAlerts)
{
const CAlert& alert = item.second;
if (alert.AppliesToMe() && alert.nPriority > nPriority)
{
nPriority = alert.nPriority;
strStatusBar = alert.strStatusBar;
if (nPriority > 1000)
strRPC = strStatusBar;
}
}
}
if (strFor == "statusbar")
return strStatusBar;
else if (strFor == "rpc")
return strRPC;
assert(!"GetWarnings() : invalid parameter");
return "error";
}
//////////////////////////////////////////////////////////////////////////////
//
// Messages
//
bool static AlreadyHave(CTxDB& txdb, const CInv& inv)
{
switch (inv.type)
{
case MSG_TX:
{
bool txInMap = false;
{
LOCK(mempool.cs);
txInMap = (mempool.exists(inv.hash));
}
return txInMap ||
mapOrphanTransactions.count(inv.hash) ||
txdb.ContainsTx(inv.hash);
}
case MSG_BLOCK:
return mapBlockIndex.count(inv.hash) ||
mapOrphanBlocks.count(inv.hash);
}
// Don't know what it is, just say we already got one
return true;
}
// The message start string is designed to be unlikely to occur in normal data.
// The characters are rarely used upper ASCII, not valid as UTF-8, and produce
// a large 4-byte int at any alignment.
unsigned char pchMessageStart[4] = { 0xb2, 0xf7, 0xe4, 0xeb };
bool static ProcessMessage(CNode* pfrom, string strCommand, CDataStream& vRecv)
{
static map<CService, CPubKey> mapReuseKey;
RandAddSeedPerfmon();
if (fDebug)
printf("received: %s (%" PRIszu " bytes)\n", strCommand.c_str(), vRecv.size());
if (mapArgs.count("-dropmessagestest") && GetRand(atoi(mapArgs["-dropmessagestest"])) == 0)
{
printf("dropmessagestest DROPPING RECV MESSAGE\n");
return true;
}
if (strCommand == "version")
{
// Each connection can only send one version message
if (pfrom->nVersion != 0)
{
pfrom->Misbehaving(1);
return false;
}
int64_t nTime;
CAddress addrMe;
CAddress addrFrom;
uint64_t nNonce = 1;
vRecv >> pfrom->nVersion >> pfrom->nServices >> nTime >> addrMe;
if (pfrom->nVersion < MIN_PROTO_VERSION)
{
// Since February 20, 2012, the protocol is initiated at version 209,
// and earlier versions are no longer supported
printf("partner %s using obsolete version %i; disconnecting\n", pfrom->addr.ToString().c_str(), pfrom->nVersion);
pfrom->fDisconnect = true;
return false;
}
if (pfrom->nVersion == 10300)
pfrom->nVersion = 300;
if (!vRecv.empty())
vRecv >> addrFrom >> nNonce;
if (!vRecv.empty())
vRecv >> pfrom->strSubVer;
if (!vRecv.empty())
vRecv >> pfrom->nStartingHeight;
if (pfrom->fInbound && addrMe.IsRoutable())
{
pfrom->addrLocal = addrMe;
SeenLocal(addrMe);
}
// Disconnect if we connected to ourself
if (nNonce == nLocalHostNonce && nNonce > 1)
{
printf("connected to self at %s, disconnecting\n", pfrom->addr.ToString().c_str());
pfrom->fDisconnect = true;
return true;
}
if (pfrom->nVersion < 60010)
{
printf("partner %s using a buggy client %d, disconnecting\n", pfrom->addr.ToString().c_str(), pfrom->nVersion);
pfrom->fDisconnect = true;
return true;
}
// record my external IP reported by peer
if (addrFrom.IsRoutable() && addrMe.IsRoutable())
addrSeenByPeer = addrMe;
// Be shy and don't send version until we hear
if (pfrom->fInbound)
pfrom->PushVersion();
pfrom->fClient = !(pfrom->nServices & NODE_NETWORK);
AddTimeData(pfrom->addr, nTime);
// Change version
pfrom->PushMessage("verack");
pfrom->vSend.SetVersion(min(pfrom->nVersion, PROTOCOL_VERSION));
if (!pfrom->fInbound)
{
// Advertise our address
if (!fNoListen && !IsInitialBlockDownload())
{
CAddress addr = GetLocalAddress(&pfrom->addr);
if (addr.IsRoutable())
pfrom->PushAddress(addr);
}
// Get recent addresses
if (pfrom->fOneShot || pfrom->nVersion >= CADDR_TIME_VERSION || addrman.size() < 1000)
{
pfrom->PushMessage("getaddr");
pfrom->fGetAddr = true;
}
addrman.Good(pfrom->addr);
} else {
if (((CNetAddr)pfrom->addr) == (CNetAddr)addrFrom)
{
addrman.Add(addrFrom, addrFrom);
addrman.Good(addrFrom);
}
}
// Ask the first connected node for block updates
static int nAskedForBlocks = 0;
if (!pfrom->fClient && !pfrom->fOneShot &&
(pfrom->nStartingHeight > (nBestHeight - 144)) &&
(pfrom->nVersion < NOBLKS_VERSION_START ||
pfrom->nVersion >= NOBLKS_VERSION_END) &&
(nAskedForBlocks < 1 || vNodes.size() <= 1))
{
nAskedForBlocks++;
pfrom->PushGetBlocks(pindexBest, uint256(0));
}
// Relay alerts
{
LOCK(cs_mapAlerts);
BOOST_FOREACH(PAIRTYPE(const uint256, CAlert)& item, mapAlerts)
item.second.RelayTo(pfrom);
}
// Relay sync-checkpoint
{
LOCK(Checkpoints::cs_hashSyncCheckpoint);
if (!Checkpoints::checkpointMessage.IsNull())
Checkpoints::checkpointMessage.RelayTo(pfrom);
}
pfrom->fSuccessfullyConnected = true;
printf("receive version message: version %d, blocks=%d, us=%s, them=%s, peer=%s\n", pfrom->nVersion, pfrom->nStartingHeight, addrMe.ToString().c_str(), addrFrom.ToString().c_str(), pfrom->addr.ToString().c_str());
cPeerBlockCounts.input(pfrom->nStartingHeight);
// ppcoin: ask for pending sync-checkpoint if any
if (!IsInitialBlockDownload())
Checkpoints::AskForPendingSyncCheckpoint(pfrom);
}
else if (pfrom->nVersion == 0)
{
// Must have a version message before anything else
pfrom->Misbehaving(1);
return false;
}
else if (strCommand == "verack")
{
pfrom->vRecv.SetVersion(min(pfrom->nVersion, PROTOCOL_VERSION));
}
else if (strCommand == "addr")
{
vector<CAddress> vAddr;
vRecv >> vAddr;
// Don't want addr from older versions unless seeding
if (pfrom->nVersion < CADDR_TIME_VERSION && addrman.size() > 1000)
return true;
if (vAddr.size() > 1000)
{
pfrom->Misbehaving(20);
return error("message addr size() = %" PRIszu "", vAddr.size());
}
// Store the new addresses
vector<CAddress> vAddrOk;
int64_t nNow = GetAdjustedTime();
int64_t nSince = nNow - 10 * 60;
BOOST_FOREACH(CAddress& addr, vAddr)
{
if (fShutdown)
return true;
if (addr.nTime <= 100000000 || addr.nTime > nNow + 10 * 60)
addr.nTime = nNow - 5 * nOneDay;
pfrom->AddAddressKnown(addr);
bool fReachable = IsReachable(addr);
if (addr.nTime > nSince && !pfrom->fGetAddr && vAddr.size() <= 10 && addr.IsRoutable())
{
// Relay to a limited number of other nodes
{
LOCK(cs_vNodes);
// Use deterministic randomness to send to the same nodes for 24 hours
// at a time so the setAddrKnowns of the chosen nodes prevent repeats
static uint256 hashSalt;
if (hashSalt == 0)
hashSalt = GetRandHash();
uint64_t hashAddr = addr.GetHash();
uint256 hashRand = hashSalt ^ (hashAddr<<32) ^ ((GetTime()+hashAddr)/nOneDay);
hashRand = Hash(BEGIN(hashRand), END(hashRand));
multimap<uint256, CNode*> mapMix;
BOOST_FOREACH(CNode* pnode, vNodes)
{
if (pnode->nVersion < CADDR_TIME_VERSION)
continue;
unsigned int nPointer;
memcpy(&nPointer, &pnode, sizeof(nPointer));
uint256 hashKey = hashRand ^ nPointer;
hashKey = Hash(BEGIN(hashKey), END(hashKey));
mapMix.insert(make_pair(hashKey, pnode));
}
int nRelayNodes = fReachable ? 2 : 1; // limited relaying of addresses outside our network(s)
for (multimap<uint256, CNode*>::iterator mi = mapMix.begin(); mi != mapMix.end() && nRelayNodes-- > 0; ++mi)
((*mi).second)->PushAddress(addr);
}
}
// Do not store addresses outside our network
if (fReachable)
vAddrOk.push_back(addr);
}
addrman.Add(vAddrOk, pfrom->addr, 2 * nOneHour);
if (vAddr.size() < 1000)
pfrom->fGetAddr = false;
if (pfrom->fOneShot)
pfrom->fDisconnect = true;
}
else if (strCommand == "inv")
{
vector<CInv> vInv;
vRecv >> vInv;
if (vInv.size() > MAX_INV_SZ)
{
pfrom->Misbehaving(20);
return error("message inv size() = %" PRIszu "", vInv.size());
}
// find last block in inv vector
unsigned int nLastBlock = std::numeric_limits<uint32_t>::max();
for (unsigned int nInv = 0; nInv < vInv.size(); nInv++) {
if (vInv[vInv.size() - 1 - nInv].type == MSG_BLOCK) {
nLastBlock = vInv.size() - 1 - nInv;
break;
}
}
CTxDB txdb("r");
for (unsigned int nInv = 0; nInv < vInv.size(); nInv++)
{
const CInv &inv = vInv[nInv];
if (fShutdown)
return true;
pfrom->AddInventoryKnown(inv);
bool fAlreadyHave = AlreadyHave(txdb, inv);
if (fDebug)
printf(" got inventory: %s %s\n", inv.ToString().c_str(), fAlreadyHave ? "have" : "new");
if (!fAlreadyHave)
pfrom->AskFor(inv);
else if (inv.type == MSG_BLOCK && mapOrphanBlocks.count(inv.hash)) {
pfrom->PushGetBlocks(pindexBest, GetOrphanRoot(mapOrphanBlocks[inv.hash]));
} else if (nInv == nLastBlock) {
// In case we are on a very long side-chain, it is possible that we already have
// the last block in an inv bundle sent in response to getblocks. Try to detect
// this situation and push another getblocks to continue.
pfrom->PushGetBlocks(mapBlockIndex[inv.hash], uint256(0));
if (fDebug)
printf("force request: %s\n", inv.ToString().c_str());
}
// Track requests for our stuff
Inventory(inv.hash);
}
}
else if (strCommand == "getdata")
{
vector<CInv> vInv;
vRecv >> vInv;
if (vInv.size() > MAX_INV_SZ)
{
pfrom->Misbehaving(20);
return error("message getdata size() = %" PRIszu "", vInv.size());
}
if (fDebugNet || (vInv.size() != 1))
printf("received getdata (%" PRIszu " invsz)\n", vInv.size());
BOOST_FOREACH(const CInv& inv, vInv)
{
if (fShutdown)
return true;
if (fDebugNet || (vInv.size() == 1))
printf("received getdata for: %s\n", inv.ToString().c_str());
if (inv.type == MSG_BLOCK)
{
// Send block from disk
map<uint256, CBlockIndex*>::iterator mi = mapBlockIndex.find(inv.hash);
if (mi != mapBlockIndex.end())
{
CBlock block;
block.ReadFromDisk((*mi).second);
pfrom->PushMessage("block", block);
// Trigger them to send a getblocks request for the next batch of inventory
if (inv.hash == pfrom->hashContinue)
{
// ppcoin: send latest proof-of-work block to allow the
// download node to accept as orphan (proof-of-stake
// block might be rejected by stake connection check)
vector<CInv> vInv;
vInv.push_back(CInv(MSG_BLOCK, GetLastBlockIndex(pindexBest, false)->GetBlockHash()));
pfrom->PushMessage("inv", vInv);
pfrom->hashContinue = 0;
}
}
}
else if (inv.IsKnownType())
{
// Send stream from relay memory
bool pushed = false;
{
LOCK(cs_mapRelay);
map<CInv, CDataStream>::iterator mi = mapRelay.find(inv);
if (mi != mapRelay.end()) {
pfrom->PushMessage(inv.GetCommand(), (*mi).second);
pushed = true;
}
}
if (!pushed && inv.type == MSG_TX) {
LOCK(mempool.cs);
if (mempool.exists(inv.hash)) {
CTransaction tx = mempool.lookup(inv.hash);
CDataStream ss(SER_NETWORK, PROTOCOL_VERSION);
ss.reserve(1000);
ss << tx;
pfrom->PushMessage("tx", ss);
}
}
}
// Track requests for our stuff
Inventory(inv.hash);
}
}
else if (strCommand == "getblocks")
{
CBlockLocator locator;
uint256 hashStop;
vRecv >> locator >> hashStop;
// Find the last block the caller has in the main chain
CBlockIndex* pindex = locator.GetBlockIndex();
// Send the rest of the chain
if (pindex)
pindex = pindex->pnext;
int nLimit = 500;
printf("getblocks %d to %s limit %d\n", (pindex ? pindex->nHeight : -1), hashStop.ToString().substr(0,20).c_str(), nLimit);
for (; pindex; pindex = pindex->pnext)
{
if (pindex->GetBlockHash() == hashStop)
{
printf(" getblocks stopping at %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString().substr(0,20).c_str());
// ppcoin: tell downloading node about the latest block if it's
// without risk being rejected due to stake connection check
if (hashStop != hashBestChain && pindex->GetBlockTime() + nStakeMinAge > pindexBest->GetBlockTime())
pfrom->PushInventory(CInv(MSG_BLOCK, hashBestChain));
break;
}
pfrom->PushInventory(CInv(MSG_BLOCK, pindex->GetBlockHash()));
if (--nLimit <= 0)
{
// When this block is requested, we'll send an inv that'll make them
// getblocks the next batch of inventory.
printf(" getblocks stopping at limit %d %s\n", pindex->nHeight, pindex->GetBlockHash().ToString().substr(0,20).c_str());
pfrom->hashContinue = pindex->GetBlockHash();
break;
}
}
}
else if (strCommand == "checkpoint")
{
CSyncCheckpoint checkpoint;
vRecv >> checkpoint;
if (checkpoint.ProcessSyncCheckpoint(pfrom))
{
// Relay
pfrom->hashCheckpointKnown = checkpoint.hashCheckpoint;
LOCK(cs_vNodes);
BOOST_FOREACH(CNode* pnode, vNodes)
checkpoint.RelayTo(pnode);
}
}
else if (strCommand == "getheaders")
{
CBlockLocator locator;
uint256 hashStop;
vRecv >> locator >> hashStop;
CBlockIndex* pindex = NULL;
if (locator.IsNull())
{
// If locator is null, return the hashStop block
map<uint256, CBlockIndex*>::iterator mi = mapBlockIndex.find(hashStop);
if (mi == mapBlockIndex.end())
return true;
pindex = (*mi).second;
}
else
{
// Find the last block the caller has in the main chain
pindex = locator.GetBlockIndex();
if (pindex)
pindex = pindex->pnext;
}
vector<CBlock> vHeaders;
int nLimit = 2000;
printf("getheaders %d to %s\n", (pindex ? pindex->nHeight : -1), hashStop.ToString().substr(0,20).c_str());
for (; pindex; pindex = pindex->pnext)
{
vHeaders.push_back(pindex->GetBlockHeader());
if (--nLimit <= 0 || pindex->GetBlockHash() == hashStop)
break;
}
pfrom->PushMessage("headers", vHeaders);
}
else if (strCommand == "tx")
{
vector<uint256> vWorkQueue;
vector<uint256> vEraseQueue;
CDataStream vMsg(vRecv);
CTxDB txdb("r");
CTransaction tx;
vRecv >> tx;
CInv inv(MSG_TX, tx.GetHash());
pfrom->AddInventoryKnown(inv);
bool fMissingInputs = false;
if (tx.AcceptToMemoryPool(txdb, true, &fMissingInputs))
{
SyncWithWallets(tx, NULL, true);
RelayTransaction(tx, inv.hash);
mapAlreadyAskedFor.erase(inv);
vWorkQueue.push_back(inv.hash);
vEraseQueue.push_back(inv.hash);
// Recursively process any orphan transactions that depended on this one
for (unsigned int i = 0; i < vWorkQueue.size(); i++)
{
uint256 hashPrev = vWorkQueue[i];
for (set<uint256>::iterator mi = mapOrphanTransactionsByPrev[hashPrev].begin();
mi != mapOrphanTransactionsByPrev[hashPrev].end();
++mi)
{
const uint256& orphanTxHash = *mi;
CTransaction& orphanTx = mapOrphanTransactions[orphanTxHash];
bool fMissingInputs2 = false;
if (orphanTx.AcceptToMemoryPool(txdb, true, &fMissingInputs2))
{
printf(" accepted orphan tx %s\n", orphanTxHash.ToString().substr(0,10).c_str());
SyncWithWallets(tx, NULL, true);
RelayTransaction(orphanTx, orphanTxHash);
mapAlreadyAskedFor.erase(CInv(MSG_TX, orphanTxHash));
vWorkQueue.push_back(orphanTxHash);
vEraseQueue.push_back(orphanTxHash);
}
else if (!fMissingInputs2)
{
// invalid orphan
vEraseQueue.push_back(orphanTxHash);
printf(" removed invalid orphan tx %s\n", orphanTxHash.ToString().substr(0,10).c_str());
}
}
}
BOOST_FOREACH(uint256 hash, vEraseQueue)
EraseOrphanTx(hash);
}
else if (fMissingInputs)
{
AddOrphanTx(tx);
// DoS prevention: do not allow mapOrphanTransactions to grow unbounded
unsigned int nEvicted = LimitOrphanTxSize(MAX_ORPHAN_TRANSACTIONS);
if (nEvicted > 0)
printf("mapOrphan overflow, removed %u tx\n", nEvicted);
}
if (tx.nDoS) pfrom->Misbehaving(tx.nDoS);
}
else if (strCommand == "block")
{
CBlock block;
vRecv >> block;
uint256 hashBlock = block.GetHash();
printf("received block %s\n", hashBlock.ToString().substr(0,20).c_str());
// block.print();
CInv inv(MSG_BLOCK, hashBlock);
pfrom->AddInventoryKnown(inv);
if (ProcessBlock(pfrom, &block))
mapAlreadyAskedFor.erase(inv);
if (block.nDoS) pfrom->Misbehaving(block.nDoS);
}
// This asymmetric behavior for inbound and outbound connections was introduced
// to prevent a fingerprinting attack: an attacker can send specific fake addresses
// to users' AddrMan and later request them by sending getaddr messages.
// Making users (which are behind NAT and can only make outgoing connections) ignore
// getaddr message mitigates the attack.
else if ((strCommand == "getaddr") && (pfrom->fInbound))
{
// Don't return addresses older than nCutOff timestamp
int64_t nCutOff = GetTime() - (nNodeLifespan * nOneDay);
pfrom->vAddrToSend.clear();
vector<CAddress> vAddr = addrman.GetAddr();
BOOST_FOREACH(const CAddress &addr, vAddr)
if(addr.nTime > nCutOff)
pfrom->PushAddress(addr);
}
else if (strCommand == "mempool")
{
std::vector<uint256> vtxid;
mempool.queryHashes(vtxid);
vector<CInv> vInv;
for (unsigned int i = 0; i < vtxid.size(); i++) {
CInv inv(MSG_TX, vtxid[i]);
vInv.push_back(inv);
if (i == (MAX_INV_SZ - 1))
break;
}
if (vInv.size() > 0)
pfrom->PushMessage("inv", vInv);
}
else if (strCommand == "checkorder")
{
uint256 hashReply;
vRecv >> hashReply;
if (!GetBoolArg("-allowreceivebyip"))
{
pfrom->PushMessage("reply", hashReply, (int)2, string(""));
return true;
}
CWalletTx order;
vRecv >> order;
/// we have a chance to check the order here
// Keep giving the same key to the same ip until they use it
if (!mapReuseKey.count(pfrom->addr))
pwalletMain->GetKeyFromPool(mapReuseKey[pfrom->addr], true);
// Send back approval of order and pubkey to use
CScript scriptPubKey;
scriptPubKey << mapReuseKey[pfrom->addr] << OP_CHECKSIG;
pfrom->PushMessage("reply", hashReply, (int)0, scriptPubKey);
}
else if (strCommand == "reply")
{
uint256 hashReply;
vRecv >> hashReply;
CRequestTracker tracker;
{
LOCK(pfrom->cs_mapRequests);
map<uint256, CRequestTracker>::iterator mi = pfrom->mapRequests.find(hashReply);
if (mi != pfrom->mapRequests.end())
{
tracker = (*mi).second;
pfrom->mapRequests.erase(mi);
}
}
if (!tracker.IsNull())
tracker.fn(tracker.param1, vRecv);
}
else if (strCommand == "ping")
{
if (pfrom->nVersion > BIP0031_VERSION)
{
uint64_t nonce = 0;
vRecv >> nonce;
// Echo the message back with the nonce. This allows for two useful features:
//
// 1) A remote node can quickly check if the connection is operational
// 2) Remote nodes can measure the latency of the network thread. If this node
// is overloaded it won't respond to pings quickly and the remote node can
// avoid sending us more work, like chain download requests.
//
// The nonce stops the remote getting confused between different pings: without
// it, if the remote node sends a ping once per second and this node takes 5
// seconds to respond to each, the 5th ping the remote sends would appear to
// return very quickly.
pfrom->PushMessage("pong", nonce);
}
}
else if (strCommand == "alert")
{
CAlert alert;
vRecv >> alert;
uint256 alertHash = alert.GetHash();
if (pfrom->setKnown.count(alertHash) == 0)
{
if (alert.ProcessAlert())
{
// Relay
pfrom->setKnown.insert(alertHash);
{
LOCK(cs_vNodes);
BOOST_FOREACH(CNode* pnode, vNodes)
alert.RelayTo(pnode);
}
}
else {
// Small DoS penalty so peers that send us lots of
// duplicate/expired/invalid-signature/whatever alerts
// eventually get banned.
// This isn't a Misbehaving(100) (immediate ban) because the
// peer might be an older or different implementation with
// a different signature key, etc.
pfrom->Misbehaving(10);
}
}
}
else
{
// Ignore unknown commands for extensibility
}
// Update the last seen time for this node's address
if (pfrom->fNetworkNode)
if (strCommand == "version" || strCommand == "addr" || strCommand == "inv" || strCommand == "getdata" || strCommand == "ping")
AddressCurrentlyConnected(pfrom->addr);
return true;
}
bool ProcessMessages(CNode* pfrom)
{
CDataStream& vRecv = pfrom->vRecv;
if (vRecv.empty())
return true;
//if (fDebug)
// printf("ProcessMessages(%u bytes)\n", vRecv.size());
//
// Message format
// (4) message start
// (12) command
// (4) size
// (4) checksum
// (x) data
//
while (true)
{
// Don't bother if send buffer is too full to respond anyway
if (pfrom->vSend.size() >= SendBufferSize())
break;
// Scan for message start
CDataStream::iterator pstart = search(vRecv.begin(), vRecv.end(), BEGIN(pchMessageStart), END(pchMessageStart));
int nHeaderSize = vRecv.GetSerializeSize(CMessageHeader());
if (vRecv.end() - pstart < nHeaderSize)
{
if ((int)vRecv.size() > nHeaderSize)
{
printf("\n\nPROCESSMESSAGE MESSAGESTART NOT FOUND\n\n");
vRecv.erase(vRecv.begin(), vRecv.end() - nHeaderSize);
}
break;
}
if (pstart - vRecv.begin() > 0)
printf("\n\nPROCESSMESSAGE SKIPPED %" PRIpdd " BYTES\n\n", pstart - vRecv.begin());
vRecv.erase(vRecv.begin(), pstart);
// Read header
vector<char> vHeaderSave(vRecv.begin(), vRecv.begin() + nHeaderSize);
CMessageHeader hdr;
vRecv >> hdr;
if (!hdr.IsValid())
{
printf("\n\nPROCESSMESSAGE: ERRORS IN HEADER %s\n\n\n", hdr.GetCommand().c_str());
continue;
}
string strCommand = hdr.GetCommand();
// Message size
unsigned int nMessageSize = hdr.nMessageSize;
if (nMessageSize > MAX_SIZE)
{
printf("ProcessMessages(%s, %u bytes) : nMessageSize > MAX_SIZE\n", strCommand.c_str(), nMessageSize);
continue;
}
if (nMessageSize > vRecv.size())
{
// Rewind and wait for rest of message
vRecv.insert(vRecv.begin(), vHeaderSave.begin(), vHeaderSave.end());
break;
}
// Checksum
uint256 hash = Hash(vRecv.begin(), vRecv.begin() + nMessageSize);
unsigned int nChecksum = 0;
memcpy(&nChecksum, &hash, sizeof(nChecksum));
if (nChecksum != hdr.nChecksum)
{
printf("ProcessMessages(%s, %u bytes) : CHECKSUM ERROR nChecksum=%08x hdr.nChecksum=%08x\n",
strCommand.c_str(), nMessageSize, nChecksum, hdr.nChecksum);
continue;
}