Permalink
Cannot retrieve contributors at this time
Name already in use
A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
splitnet-wrn/eval.py
Go to fileThis commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
310 lines (259 sloc)
14.7 KB
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
import os | |
import sys | |
from datetime import datetime | |
import time | |
import tensorflow as tf | |
import numpy as np | |
import cPickle as pickle | |
import cifar100 | |
import resnet_split as resnet | |
# Dataset Configuration | |
tf.app.flags.DEFINE_string('data_dir', './cifar100/train_val_split', """Path to the CIFAR-100 data.""") | |
tf.app.flags.DEFINE_integer('num_classes', 100, """Number of classes in the dataset.""") | |
tf.app.flags.DEFINE_integer('num_test_instance', 10000, """Number of test images.""") | |
# Network Configuration | |
tf.app.flags.DEFINE_integer('batch_size', 100, """Number of images to process in a batch.""") | |
tf.app.flags.DEFINE_integer('num_residual_units', 2, """Number of residual block per group. | |
Total number of conv layers will be 6n+4""") | |
tf.app.flags.DEFINE_integer('k', 8, """Network width multiplier""") | |
tf.app.flags.DEFINE_integer('ngroups1', 1, """Grouping number on logits""") | |
tf.app.flags.DEFINE_integer('ngroups2', 1, """Grouping number on unit_3_x""") | |
tf.app.flags.DEFINE_integer('ngroups3', 1, """Grouping number on unit_2_x""") | |
# Optimization Configuration | |
tf.app.flags.DEFINE_float('l2_weight', 0.0001, """L2 loss weight applied all the weights""") | |
tf.app.flags.DEFINE_float('momentum', 0.9, """The momentum of MomentumOptimizer""") | |
tf.app.flags.DEFINE_float('initial_lr', 0.1, """Initial learning rate""") | |
tf.app.flags.DEFINE_string('lr_step_epoch', "80.0,120.0,160.0", """Epochs after which learing rate decays""") | |
tf.app.flags.DEFINE_float('lr_decay', 0.1, """Learning rate decay factor""") | |
tf.app.flags.DEFINE_boolean('finetune', False, """Whether to finetune.""") | |
# Evaluation Configuration | |
tf.app.flags.DEFINE_string('basemodel', './group/model.ckpt-199999', """Base model to load paramters""") | |
tf.app.flags.DEFINE_string('checkpoint', './split/model.ckpt-149999', """Path to the model checkpoint file""") | |
tf.app.flags.DEFINE_string('output_file', './split/eval.pkl', """Path to the result pkl file""") | |
tf.app.flags.DEFINE_integer('test_iter', 100, """Number of test batches during the evaluation""") | |
tf.app.flags.DEFINE_integer('display', 10, """Number of iterations to display training info.""") | |
tf.app.flags.DEFINE_float('gpu_fraction', 0.95, """The fraction of GPU memory to be allocated""") | |
tf.app.flags.DEFINE_boolean('log_device_placement', False, """Whether to log device placement.""") | |
FLAGS = tf.app.flags.FLAGS | |
def get_lr(initial_lr, lr_decay, lr_decay_steps, global_step): | |
lr = initial_lr | |
for s in lr_decay_steps: | |
if global_step >= s: | |
lr *= lr_decay | |
return lr | |
def train(): | |
print('[Dataset Configuration]') | |
print('\tCIFAR-100 dir: %s' % FLAGS.data_dir) | |
print('\tNumber of classes: %d' % FLAGS.num_classes) | |
print('\tNumber of test images: %d' % FLAGS.num_test_instance) | |
print('[Network Configuration]') | |
print('\tBatch size: %d' % FLAGS.batch_size) | |
print('\tResidual blocks per group: %d' % FLAGS.num_residual_units) | |
print('\tNetwork width multiplier: %d' % FLAGS.k) | |
print('\tNumber of Groups: %d-%d-%d' % (FLAGS.ngroups3, FLAGS.ngroups2, FLAGS.ngroups1)) | |
print('\tBasemodel file: %s' % FLAGS.basemodel) | |
print('[Evaluation Configuration]') | |
print('\tCheckpoint file: %s' % FLAGS.checkpoint) | |
print('\tOutput file path: %s' % FLAGS.output_file) | |
print('\tTest iterations: %d' % FLAGS.test_iter) | |
print('\tSteps per displaying info: %d' % FLAGS.display) | |
print('\tGPU memory fraction: %f' % FLAGS.gpu_fraction) | |
print('\tLog device placement: %d' % FLAGS.log_device_placement) | |
with tf.Graph().as_default(): | |
global_step = tf.Variable(0, trainable=False, name='global_step') | |
# Get images and labels of CIFAR-100 | |
print('Load CIFAR-100 dataset') | |
test_dataset_path = os.path.join(FLAGS.data_dir, 'test') | |
with tf.variable_scope('test_image'): | |
cifar100_test = cifar100.CIFAR100Runner(test_dataset_path, image_per_thread=1, | |
shuffle=False, distort=False, capacity=5000) | |
test_images, test_labels = cifar100_test.get_inputs(FLAGS.batch_size) | |
# Build a Graph that computes the predictions from the inference model. | |
images = tf.placeholder(tf.float32, [FLAGS.batch_size, cifar100.IMAGE_SIZE, cifar100.IMAGE_SIZE, 3]) | |
labels = tf.placeholder(tf.int32, [FLAGS.batch_size]) | |
# Get splitted params | |
if not FLAGS.basemodel: | |
print('No basemodel found to load split params') | |
sys.exit(-1) | |
else: | |
print('Load split params from %s' % FLAGS.basemodel) | |
def get_perms(q_name, ngroups): | |
split_alpha = reader.get_tensor(q_name+'/alpha') | |
q_amax = np.argmax(split_alpha, axis=0) | |
return [np.where(q_amax == i)[0] for i in range(ngroups)] | |
reader = tf.train.NewCheckpointReader(FLAGS.basemodel) | |
split_params = {} | |
print('\tlogits...') | |
base_logits_w = reader.get_tensor('logits/fc/weights') | |
base_logits_b = reader.get_tensor('logits/fc/biases') | |
split_p1_idxs = get_perms('group/split_p1', FLAGS.ngroups1) | |
split_q1_idxs = get_perms('group/split_q1', FLAGS.ngroups1) | |
logits_params = {'weights':[], 'biases':[], 'input_perms':[], 'output_perms':[]} | |
for i in range(FLAGS.ngroups1): | |
logits_params['weights'].append(base_logits_w[split_p1_idxs[i], :][:, split_q1_idxs[i]]) | |
logits_params['biases'].append(base_logits_b[split_q1_idxs[i]]) | |
logits_params['input_perms'] = split_p1_idxs | |
logits_params['output_perms'] = split_q1_idxs | |
split_params['logits'] = logits_params | |
if FLAGS.ngroups2 > 1: | |
print('\tunit_3_x...') | |
base_unit_3_0_shortcut_k = reader.get_tensor('unit_3_0/shortcut/kernel') | |
base_unit_3_0_conv1_k = reader.get_tensor('unit_3_0/conv_1/kernel') | |
base_unit_3_0_conv2_k = reader.get_tensor('unit_3_0/conv_2/kernel') | |
base_unit_3_1_conv1_k = reader.get_tensor('unit_3_1/conv_1/kernel') | |
base_unit_3_1_conv2_k = reader.get_tensor('unit_3_1/conv_2/kernel') | |
split_p2_idxs = get_perms('group/split_p2', FLAGS.ngroups2) | |
split_q2_idxs = _merge_split_idxs(split_p1_idxs, _get_even_merge_idxs(FLAGS.ngroups1, FLAGS.ngroups2)) | |
split_r21_idxs = get_perms('group/split_r21', FLAGS.ngroups2) | |
split_r22_idxs = get_perms('group/split_r22', FLAGS.ngroups2) | |
unit_3_0_params = {'shortcut':[], 'conv1':[], 'conv2':[], 'p_perms':[], 'q_perms':[], 'r_perms':[]} | |
for i in range(FLAGS.ngroups2): | |
unit_3_0_params['shortcut'].append(base_unit_3_0_shortcut_k[:,:,split_p2_idxs[i],:][:,:,:,split_q2_idxs[i]]) | |
unit_3_0_params['conv1'].append(base_unit_3_0_conv1_k[:,:,split_p2_idxs[i],:][:,:,:,split_r21_idxs[i]]) | |
unit_3_0_params['conv2'].append(base_unit_3_0_conv2_k[:,:,split_r21_idxs[i],:][:,:,:,split_q2_idxs[i]]) | |
unit_3_0_params['p_perms'] = split_p2_idxs | |
unit_3_0_params['q_perms'] = split_q2_idxs | |
unit_3_0_params['r_perms'] = split_r21_idxs | |
split_params['unit_3_0'] = unit_3_0_params | |
unit_3_1_params = {'conv1':[], 'conv2':[], 'p_perms':[], 'r_perms':[]} | |
for i in range(FLAGS.ngroups2): | |
unit_3_1_params['conv1'].append(base_unit_3_1_conv1_k[:,:,split_q2_idxs[i],:][:,:,:,split_r22_idxs[i]]) | |
unit_3_1_params['conv2'].append(base_unit_3_1_conv2_k[:,:,split_r22_idxs[i],:][:,:,:,split_q2_idxs[i]]) | |
unit_3_1_params['p_perms'] = split_q2_idxs | |
unit_3_1_params['r_perms'] = split_r22_idxs | |
split_params['unit_3_1'] = unit_3_1_params | |
if FLAGS.ngroups3 > 1: | |
print('\tconv4_x...') | |
base_unit_2_0_shortcut_k = reader.get_tensor('unit_2_0/shortcut/kernel') | |
base_unit_2_0_conv1_k = reader.get_tensor('unit_2_0/conv_1/kernel') | |
base_unit_2_0_conv2_k = reader.get_tensor('unit_2_0/conv_2/kernel') | |
base_unit_2_1_conv1_k = reader.get_tensor('unit_2_1/conv_1/kernel') | |
base_unit_2_1_conv2_k = reader.get_tensor('unit_2_1/conv_2/kernel') | |
split_p3_idxs = get_perms('group/split_p3', FLAGS.ngroups3) | |
split_q3_idxs = _merge_split_idxs(split_p2_idxs, _get_even_merge_idxs(FLAGS.ngroups2, FLAGS.ngroups3)) | |
split_r31_idxs = get_perms('group/split_r31', FLAGS.ngroups3) | |
split_r32_idxs = get_perms('group/split_r32', FLAGS.ngroups3) | |
unit_2_0_params = {'shortcut':[], 'conv1':[], 'conv2':[], 'p_perms':[], 'q_perms':[], 'r_perms':[]} | |
for i in range(FLAGS.ngroups3): | |
unit_2_0_params['shortcut'].append(base_unit_2_0_shortcut_k[:,:,split_p3_idxs[i],:][:,:,:,split_q3_idxs[i]]) | |
unit_2_0_params['conv1'].append(base_unit_2_0_conv1_k[:,:,split_p3_idxs[i],:][:,:,:,split_r31_idxs[i]]) | |
unit_2_0_params['conv2'].append(base_unit_2_0_conv2_k[:,:,split_r31_idxs[i],:][:,:,:,split_q3_idxs[i]]) | |
unit_2_0_params['p_perms'] = split_p3_idxs | |
unit_2_0_params['q_perms'] = split_q3_idxs | |
unit_2_0_params['r_perms'] = split_r31_idxs | |
split_params['unit_2_0'] = unit_2_0_params | |
unit_2_1_params = {'conv1':[], 'conv2':[], 'p_perms':[], 'r_perms':[]} | |
for i in range(FLAGS.ngroups3): | |
unit_2_1_params['conv1'].append(base_unit_2_1_conv1_k[:,:,split_q3_idxs[i],:][:,:,:,split_r32_idxs[i]]) | |
unit_2_1_params['conv2'].append(base_unit_2_1_conv2_k[:,:,split_r32_idxs[i],:][:,:,:,split_q3_idxs[i]]) | |
unit_2_1_params['p_perms'] = split_q3_idxs | |
unit_2_1_params['r_perms'] = split_r32_idxs | |
split_params['unit_2_1'] = unit_2_1_params | |
# Build model | |
hp = resnet.HParams(batch_size=FLAGS.batch_size, | |
num_classes=FLAGS.num_classes, | |
num_residual_units=FLAGS.num_residual_units, | |
k=FLAGS.k, | |
weight_decay=FLAGS.l2_weight, | |
ngroups1=FLAGS.ngroups1, | |
ngroups2=FLAGS.ngroups2, | |
ngroups3=FLAGS.ngroups3, | |
split_params=split_params, | |
momentum=FLAGS.momentum, | |
finetune=FLAGS.finetune) | |
network = resnet.ResNet(hp, images, labels, global_step) | |
network.build_model() | |
print('Number of Weights: %d' % network._weights) | |
print('FLOPs: %d' % network._flops) | |
# Build an initialization operation to run below. | |
init = tf.global_variables_initializer() | |
# Start running operations on the Graph. | |
sess = tf.Session(config=tf.ConfigProto( | |
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=FLAGS.gpu_fraction), | |
allow_soft_placement=True, | |
log_device_placement=FLAGS.log_device_placement)) | |
'''debugging attempt | |
from tensorflow.python import debug as tf_debug | |
sess = tf_debug.LocalCLIDebugWrapperSession(sess) | |
def _get_data(datum, tensor): | |
return tensor == train_images | |
sess.add_tensor_filter("get_data", _get_data) | |
''' | |
sess.run(init) | |
# Create a saver. | |
saver = tf.train.Saver(tf.global_variables(), max_to_keep=10000) | |
if FLAGS.checkpoint is not None: | |
saver.restore(sess, FLAGS.checkpoint) | |
print('Load checkpoint %s' % FLAGS.checkpoint) | |
else: | |
print('No checkpoint file found.') | |
sys.exit(1) | |
# Start queue runners & summary_writer | |
cifar100_test.start_threads(sess, n_threads=1) | |
# Test! | |
test_loss = 0.0 | |
test_acc = 0.0 | |
test_time = 0.0 | |
confusion_matrix = np.zeros((FLAGS.num_classes, FLAGS.num_classes), dtype=np.int32) | |
for i in range(FLAGS.test_iter): | |
test_images_val, test_labels_val = sess.run([test_images, test_labels]) | |
start_time = time.time() | |
loss_value, acc_value, pred_value = sess.run([network.loss, network.acc, network.preds], | |
feed_dict={network.is_train:False, images:test_images_val, labels:test_labels_val}) | |
duration = time.time() - start_time | |
test_loss += loss_value | |
test_acc += acc_value | |
test_time += duration | |
for l, p in zip(test_labels_val, pred_value): | |
confusion_matrix[l, p] += 1 | |
if i % FLAGS.display == 0: | |
num_examples_per_step = FLAGS.batch_size | |
examples_per_sec = num_examples_per_step / duration | |
sec_per_batch = float(duration) | |
format_str = ('%s: iter %d, loss=%.4f, acc=%.4f (%.1f examples/sec; %.3f sec/batch)') | |
print (format_str % (datetime.now(), i, loss_value, acc_value, | |
examples_per_sec, sec_per_batch)) | |
test_loss /= FLAGS.test_iter | |
test_acc /= FLAGS.test_iter | |
# Print and save results | |
sec_per_image = test_time/FLAGS.test_iter/FLAGS.batch_size | |
print ('Done! Acc: %.6f, Test time: %.3f sec, %.7f sec/example' % (test_acc, test_time, sec_per_image)) | |
print ('Saving result... ') | |
result = {'accuracy': test_acc, 'confusion_matrix': confusion_matrix, | |
'test_time': test_time, 'sec_per_image': sec_per_image} | |
with open(FLAGS.output_file, 'wb') as fd: | |
pickle.dump(result, fd) | |
print ('done!') | |
def _merge_split_q(q, merge_idxs, name='merge'): | |
ngroups, dim = q.shape | |
max_idx = np.max(merge_idxs) | |
temp_list = [] | |
for i in range(max_idx + 1): | |
temp = [] | |
for j in range(ngroups): | |
if merge_idxs[j] == i: | |
temp.append(q[j,:]) | |
temp_list.append(np.sum(temp, axis=0)) | |
ret = np.array(temp_list) | |
return ret | |
def _merge_split_idxs(split_idxs, merge_idxs, name='merge'): | |
ngroups = len(split_idxs) | |
max_idx = np.max(merge_idxs) | |
ret = [] | |
for i in range(max_idx + 1): | |
temp = [] | |
for j in range(ngroups): | |
if merge_idxs[j] == i: | |
temp.append(split_idxs[j]) | |
ret.append(np.concatenate(temp)) | |
return ret | |
def _get_even_merge_idxs(N, split): | |
assert N >= split | |
num_elems = [(N + split - i - 1)/split for i in range(split)] | |
expand_split = [[i] * n for i, n in enumerate(num_elems)] | |
return [t for l in expand_split for t in l] | |
def main(argv=None): # pylint: disable=unused-argument | |
train() | |
if __name__ == '__main__': | |
tf.app.run() |