Skip to content
Permalink
master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
#!/usr/bin/env python
import os
import sys
from datetime import datetime
import time
import tensorflow as tf
import numpy as np
import cPickle as pickle
import cifar100
import resnet_split as resnet
# Dataset Configuration
tf.app.flags.DEFINE_string('data_dir', './cifar100/train_val_split', """Path to the CIFAR-100 data.""")
tf.app.flags.DEFINE_integer('num_classes', 100, """Number of classes in the dataset.""")
tf.app.flags.DEFINE_integer('num_test_instance', 10000, """Number of test images.""")
# Network Configuration
tf.app.flags.DEFINE_integer('batch_size', 100, """Number of images to process in a batch.""")
tf.app.flags.DEFINE_integer('num_residual_units', 2, """Number of residual block per group.
Total number of conv layers will be 6n+4""")
tf.app.flags.DEFINE_integer('k', 8, """Network width multiplier""")
tf.app.flags.DEFINE_integer('ngroups1', 1, """Grouping number on logits""")
tf.app.flags.DEFINE_integer('ngroups2', 1, """Grouping number on unit_3_x""")
tf.app.flags.DEFINE_integer('ngroups3', 1, """Grouping number on unit_2_x""")
# Optimization Configuration
tf.app.flags.DEFINE_float('l2_weight', 0.0001, """L2 loss weight applied all the weights""")
tf.app.flags.DEFINE_float('momentum', 0.9, """The momentum of MomentumOptimizer""")
tf.app.flags.DEFINE_float('initial_lr', 0.1, """Initial learning rate""")
tf.app.flags.DEFINE_string('lr_step_epoch', "80.0,120.0,160.0", """Epochs after which learing rate decays""")
tf.app.flags.DEFINE_float('lr_decay', 0.1, """Learning rate decay factor""")
tf.app.flags.DEFINE_boolean('finetune', False, """Whether to finetune.""")
# Evaluation Configuration
tf.app.flags.DEFINE_string('basemodel', './group/model.ckpt-199999', """Base model to load paramters""")
tf.app.flags.DEFINE_string('checkpoint', './split/model.ckpt-149999', """Path to the model checkpoint file""")
tf.app.flags.DEFINE_string('output_file', './split/eval.pkl', """Path to the result pkl file""")
tf.app.flags.DEFINE_integer('test_iter', 100, """Number of test batches during the evaluation""")
tf.app.flags.DEFINE_integer('display', 10, """Number of iterations to display training info.""")
tf.app.flags.DEFINE_float('gpu_fraction', 0.95, """The fraction of GPU memory to be allocated""")
tf.app.flags.DEFINE_boolean('log_device_placement', False, """Whether to log device placement.""")
FLAGS = tf.app.flags.FLAGS
def get_lr(initial_lr, lr_decay, lr_decay_steps, global_step):
lr = initial_lr
for s in lr_decay_steps:
if global_step >= s:
lr *= lr_decay
return lr
def train():
print('[Dataset Configuration]')
print('\tCIFAR-100 dir: %s' % FLAGS.data_dir)
print('\tNumber of classes: %d' % FLAGS.num_classes)
print('\tNumber of test images: %d' % FLAGS.num_test_instance)
print('[Network Configuration]')
print('\tBatch size: %d' % FLAGS.batch_size)
print('\tResidual blocks per group: %d' % FLAGS.num_residual_units)
print('\tNetwork width multiplier: %d' % FLAGS.k)
print('\tNumber of Groups: %d-%d-%d' % (FLAGS.ngroups3, FLAGS.ngroups2, FLAGS.ngroups1))
print('\tBasemodel file: %s' % FLAGS.basemodel)
print('[Evaluation Configuration]')
print('\tCheckpoint file: %s' % FLAGS.checkpoint)
print('\tOutput file path: %s' % FLAGS.output_file)
print('\tTest iterations: %d' % FLAGS.test_iter)
print('\tSteps per displaying info: %d' % FLAGS.display)
print('\tGPU memory fraction: %f' % FLAGS.gpu_fraction)
print('\tLog device placement: %d' % FLAGS.log_device_placement)
with tf.Graph().as_default():
global_step = tf.Variable(0, trainable=False, name='global_step')
# Get images and labels of CIFAR-100
print('Load CIFAR-100 dataset')
test_dataset_path = os.path.join(FLAGS.data_dir, 'test')
with tf.variable_scope('test_image'):
cifar100_test = cifar100.CIFAR100Runner(test_dataset_path, image_per_thread=1,
shuffle=False, distort=False, capacity=5000)
test_images, test_labels = cifar100_test.get_inputs(FLAGS.batch_size)
# Build a Graph that computes the predictions from the inference model.
images = tf.placeholder(tf.float32, [FLAGS.batch_size, cifar100.IMAGE_SIZE, cifar100.IMAGE_SIZE, 3])
labels = tf.placeholder(tf.int32, [FLAGS.batch_size])
# Get splitted params
if not FLAGS.basemodel:
print('No basemodel found to load split params')
sys.exit(-1)
else:
print('Load split params from %s' % FLAGS.basemodel)
def get_perms(q_name, ngroups):
split_alpha = reader.get_tensor(q_name+'/alpha')
q_amax = np.argmax(split_alpha, axis=0)
return [np.where(q_amax == i)[0] for i in range(ngroups)]
reader = tf.train.NewCheckpointReader(FLAGS.basemodel)
split_params = {}
print('\tlogits...')
base_logits_w = reader.get_tensor('logits/fc/weights')
base_logits_b = reader.get_tensor('logits/fc/biases')
split_p1_idxs = get_perms('group/split_p1', FLAGS.ngroups1)
split_q1_idxs = get_perms('group/split_q1', FLAGS.ngroups1)
logits_params = {'weights':[], 'biases':[], 'input_perms':[], 'output_perms':[]}
for i in range(FLAGS.ngroups1):
logits_params['weights'].append(base_logits_w[split_p1_idxs[i], :][:, split_q1_idxs[i]])
logits_params['biases'].append(base_logits_b[split_q1_idxs[i]])
logits_params['input_perms'] = split_p1_idxs
logits_params['output_perms'] = split_q1_idxs
split_params['logits'] = logits_params
if FLAGS.ngroups2 > 1:
print('\tunit_3_x...')
base_unit_3_0_shortcut_k = reader.get_tensor('unit_3_0/shortcut/kernel')
base_unit_3_0_conv1_k = reader.get_tensor('unit_3_0/conv_1/kernel')
base_unit_3_0_conv2_k = reader.get_tensor('unit_3_0/conv_2/kernel')
base_unit_3_1_conv1_k = reader.get_tensor('unit_3_1/conv_1/kernel')
base_unit_3_1_conv2_k = reader.get_tensor('unit_3_1/conv_2/kernel')
split_p2_idxs = get_perms('group/split_p2', FLAGS.ngroups2)
split_q2_idxs = _merge_split_idxs(split_p1_idxs, _get_even_merge_idxs(FLAGS.ngroups1, FLAGS.ngroups2))
split_r21_idxs = get_perms('group/split_r21', FLAGS.ngroups2)
split_r22_idxs = get_perms('group/split_r22', FLAGS.ngroups2)
unit_3_0_params = {'shortcut':[], 'conv1':[], 'conv2':[], 'p_perms':[], 'q_perms':[], 'r_perms':[]}
for i in range(FLAGS.ngroups2):
unit_3_0_params['shortcut'].append(base_unit_3_0_shortcut_k[:,:,split_p2_idxs[i],:][:,:,:,split_q2_idxs[i]])
unit_3_0_params['conv1'].append(base_unit_3_0_conv1_k[:,:,split_p2_idxs[i],:][:,:,:,split_r21_idxs[i]])
unit_3_0_params['conv2'].append(base_unit_3_0_conv2_k[:,:,split_r21_idxs[i],:][:,:,:,split_q2_idxs[i]])
unit_3_0_params['p_perms'] = split_p2_idxs
unit_3_0_params['q_perms'] = split_q2_idxs
unit_3_0_params['r_perms'] = split_r21_idxs
split_params['unit_3_0'] = unit_3_0_params
unit_3_1_params = {'conv1':[], 'conv2':[], 'p_perms':[], 'r_perms':[]}
for i in range(FLAGS.ngroups2):
unit_3_1_params['conv1'].append(base_unit_3_1_conv1_k[:,:,split_q2_idxs[i],:][:,:,:,split_r22_idxs[i]])
unit_3_1_params['conv2'].append(base_unit_3_1_conv2_k[:,:,split_r22_idxs[i],:][:,:,:,split_q2_idxs[i]])
unit_3_1_params['p_perms'] = split_q2_idxs
unit_3_1_params['r_perms'] = split_r22_idxs
split_params['unit_3_1'] = unit_3_1_params
if FLAGS.ngroups3 > 1:
print('\tconv4_x...')
base_unit_2_0_shortcut_k = reader.get_tensor('unit_2_0/shortcut/kernel')
base_unit_2_0_conv1_k = reader.get_tensor('unit_2_0/conv_1/kernel')
base_unit_2_0_conv2_k = reader.get_tensor('unit_2_0/conv_2/kernel')
base_unit_2_1_conv1_k = reader.get_tensor('unit_2_1/conv_1/kernel')
base_unit_2_1_conv2_k = reader.get_tensor('unit_2_1/conv_2/kernel')
split_p3_idxs = get_perms('group/split_p3', FLAGS.ngroups3)
split_q3_idxs = _merge_split_idxs(split_p2_idxs, _get_even_merge_idxs(FLAGS.ngroups2, FLAGS.ngroups3))
split_r31_idxs = get_perms('group/split_r31', FLAGS.ngroups3)
split_r32_idxs = get_perms('group/split_r32', FLAGS.ngroups3)
unit_2_0_params = {'shortcut':[], 'conv1':[], 'conv2':[], 'p_perms':[], 'q_perms':[], 'r_perms':[]}
for i in range(FLAGS.ngroups3):
unit_2_0_params['shortcut'].append(base_unit_2_0_shortcut_k[:,:,split_p3_idxs[i],:][:,:,:,split_q3_idxs[i]])
unit_2_0_params['conv1'].append(base_unit_2_0_conv1_k[:,:,split_p3_idxs[i],:][:,:,:,split_r31_idxs[i]])
unit_2_0_params['conv2'].append(base_unit_2_0_conv2_k[:,:,split_r31_idxs[i],:][:,:,:,split_q3_idxs[i]])
unit_2_0_params['p_perms'] = split_p3_idxs
unit_2_0_params['q_perms'] = split_q3_idxs
unit_2_0_params['r_perms'] = split_r31_idxs
split_params['unit_2_0'] = unit_2_0_params
unit_2_1_params = {'conv1':[], 'conv2':[], 'p_perms':[], 'r_perms':[]}
for i in range(FLAGS.ngroups3):
unit_2_1_params['conv1'].append(base_unit_2_1_conv1_k[:,:,split_q3_idxs[i],:][:,:,:,split_r32_idxs[i]])
unit_2_1_params['conv2'].append(base_unit_2_1_conv2_k[:,:,split_r32_idxs[i],:][:,:,:,split_q3_idxs[i]])
unit_2_1_params['p_perms'] = split_q3_idxs
unit_2_1_params['r_perms'] = split_r32_idxs
split_params['unit_2_1'] = unit_2_1_params
# Build model
hp = resnet.HParams(batch_size=FLAGS.batch_size,
num_classes=FLAGS.num_classes,
num_residual_units=FLAGS.num_residual_units,
k=FLAGS.k,
weight_decay=FLAGS.l2_weight,
ngroups1=FLAGS.ngroups1,
ngroups2=FLAGS.ngroups2,
ngroups3=FLAGS.ngroups3,
split_params=split_params,
momentum=FLAGS.momentum,
finetune=FLAGS.finetune)
network = resnet.ResNet(hp, images, labels, global_step)
network.build_model()
print('Number of Weights: %d' % network._weights)
print('FLOPs: %d' % network._flops)
# Build an initialization operation to run below.
init = tf.global_variables_initializer()
# Start running operations on the Graph.
sess = tf.Session(config=tf.ConfigProto(
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=FLAGS.gpu_fraction),
allow_soft_placement=True,
log_device_placement=FLAGS.log_device_placement))
'''debugging attempt
from tensorflow.python import debug as tf_debug
sess = tf_debug.LocalCLIDebugWrapperSession(sess)
def _get_data(datum, tensor):
return tensor == train_images
sess.add_tensor_filter("get_data", _get_data)
'''
sess.run(init)
# Create a saver.
saver = tf.train.Saver(tf.global_variables(), max_to_keep=10000)
if FLAGS.checkpoint is not None:
saver.restore(sess, FLAGS.checkpoint)
print('Load checkpoint %s' % FLAGS.checkpoint)
else:
print('No checkpoint file found.')
sys.exit(1)
# Start queue runners & summary_writer
cifar100_test.start_threads(sess, n_threads=1)
# Test!
test_loss = 0.0
test_acc = 0.0
test_time = 0.0
confusion_matrix = np.zeros((FLAGS.num_classes, FLAGS.num_classes), dtype=np.int32)
for i in range(FLAGS.test_iter):
test_images_val, test_labels_val = sess.run([test_images, test_labels])
start_time = time.time()
loss_value, acc_value, pred_value = sess.run([network.loss, network.acc, network.preds],
feed_dict={network.is_train:False, images:test_images_val, labels:test_labels_val})
duration = time.time() - start_time
test_loss += loss_value
test_acc += acc_value
test_time += duration
for l, p in zip(test_labels_val, pred_value):
confusion_matrix[l, p] += 1
if i % FLAGS.display == 0:
num_examples_per_step = FLAGS.batch_size
examples_per_sec = num_examples_per_step / duration
sec_per_batch = float(duration)
format_str = ('%s: iter %d, loss=%.4f, acc=%.4f (%.1f examples/sec; %.3f sec/batch)')
print (format_str % (datetime.now(), i, loss_value, acc_value,
examples_per_sec, sec_per_batch))
test_loss /= FLAGS.test_iter
test_acc /= FLAGS.test_iter
# Print and save results
sec_per_image = test_time/FLAGS.test_iter/FLAGS.batch_size
print ('Done! Acc: %.6f, Test time: %.3f sec, %.7f sec/example' % (test_acc, test_time, sec_per_image))
print ('Saving result... ')
result = {'accuracy': test_acc, 'confusion_matrix': confusion_matrix,
'test_time': test_time, 'sec_per_image': sec_per_image}
with open(FLAGS.output_file, 'wb') as fd:
pickle.dump(result, fd)
print ('done!')
def _merge_split_q(q, merge_idxs, name='merge'):
ngroups, dim = q.shape
max_idx = np.max(merge_idxs)
temp_list = []
for i in range(max_idx + 1):
temp = []
for j in range(ngroups):
if merge_idxs[j] == i:
temp.append(q[j,:])
temp_list.append(np.sum(temp, axis=0))
ret = np.array(temp_list)
return ret
def _merge_split_idxs(split_idxs, merge_idxs, name='merge'):
ngroups = len(split_idxs)
max_idx = np.max(merge_idxs)
ret = []
for i in range(max_idx + 1):
temp = []
for j in range(ngroups):
if merge_idxs[j] == i:
temp.append(split_idxs[j])
ret.append(np.concatenate(temp))
return ret
def _get_even_merge_idxs(N, split):
assert N >= split
num_elems = [(N + split - i - 1)/split for i in range(split)]
expand_split = [[i] * n for i, n in enumerate(num_elems)]
return [t for l in expand_split for t in l]
def main(argv=None): # pylint: disable=unused-argument
train()
if __name__ == '__main__':
tf.app.run()